Performance Model Checking Scenario-Aware Dataflow

  • Bart Theelen
  • Marc Geilen
  • Jeroen Voeten
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6919)

Abstract

Dataflow formalisms are useful for specifying signal processing and streaming applications. To adequately capture the dynamic aspects of modern applications, the formalism of Scenario-Aware Dataflow (SADF) was recently introduced, which allows analysis of worst/best-case and average-case performance across different modes of operation (scenarios). The semantic model of SADF integrates non-deterministic and discrete probabilistic behaviour with generic discrete time distributions. This combination is different from the semantic models underlying contemporary quantitative model checking approaches, which often assume exponentially distributed or continuous time or they lack support for expressing discrete probabilistic behaviour. This paper discusses a model-checking approach for computing quantitative properties of SADF models such as throughput, time-weighted average buffer occupancy and maximum response time. A compositional state-space reduction technique is introduced as well as an efficient implementation of this method that combines model construction with on-the-fly state-space reductions. Strong reductions are possible because of special semantic properties of SADF, which are common to dataflow models. We illustrate this efficiency with several case studies from the multi-media domain.

Keywords

Markov Chain Model Check Time Transition Probabilistic Choice Buffer Occupancy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD Thesis. Stanford University (1997)Google Scholar
  2. 2.
    Billingsley, P.: Probability and Measure, 2nd edn. Wiley, Chichester (1995)MATHGoogle Scholar
  3. 3.
    Chaki, S., Clarke, E.M., Ouaknine, J., Sharygina, N., Sinha, N.: State/Event-Based Software Model Checking. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.) IFM 2004. LNCS, vol. 2999, pp. 128–147. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Chung, K.L.: Markov Chains with Stationary Transition Probabilities. Springer, Heidelberg (1967)MATHGoogle Scholar
  5. 5.
    Derman, C.: Finite State Markovian Decision Processes. Academic Press, London (1970)MATHGoogle Scholar
  6. 6.
    Geilen, M.C.W., Stuijk, S.: Worst-case Performance Analysis of Synchronous Dataflow Scenarios. In: Proceedings of CODES+ISSS 2010, pp. 125–134 (2010)Google Scholar
  7. 7.
    Govindarajan, R., Gao, G.R.: Rate-Optimal Schedule for Multi-Rate DSP Computations. Journal of VLSI Signal Processing 9, 211–235 (1995)CrossRefGoogle Scholar
  8. 8.
    Ghamarian, A.H., Geilen, M.C.W., Stuijk, S., Basten, T., Moonen, A.J.M., Bekooij, M.J.G., Theelen, B.D., Mousavi, M.R.: Throughput Analysis of Synchronous Data Flow Graphs. In: Proceedings of ACSD 2006, pp. 25–34 (2006)Google Scholar
  9. 9.
    Ghamarian, A.H., Stuijk, S., Basten, T., Geilen, M.C.W., Theelen, B.D.: Latency Minimization for Synchronous Data Flow Graphs. In: Proceedings of DSD 2007, pp. 189–196 (2007)Google Scholar
  10. 10.
    Gheorghita, S.V., Stuijk, S., Basten, T., Corporaal, H.: Automatic Scenario Detection for Improved WCET Estimation. In: Proceedings of DAC 2005, pp. 101–104 (2005)Google Scholar
  11. 11.
    Gheorghita, S.V., Basten, T., Corporaal, H.: Application Scenarios in Streaming-Oriented Embedded System Design. In: Proceeedings of SoC 2006, pp. 175–178 (2006)Google Scholar
  12. 12.
    Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: A Toolbox for the Construction and Analysis of Distributed Processes. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Hermanns, H. (ed.): Interactive Markov Chains. LNCS, vol. 2428. Springer, Heidelberg (2002)MATHGoogle Scholar
  14. 14.
    Katoen, J.-P., Hahn, E.M., Hermanns, H., Jansen, D., Zapreev, I.: The Ins and Outs of the Probabilistic Model Checker MRMC. In: Proceedings of QEST 2009, pp. 167–176 (2009)Google Scholar
  15. 15.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic Real-time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Kwiatkowska, M., Norman, G., Parker, D., Sproston, J.: Performance Analysis of Probabilistic Timed Automata using Digital Clocks. Formal Methods in System Design 29, 33–78 (2006)CrossRefMATHGoogle Scholar
  17. 17.
    Larsen, K., Pettersson, P., Yi, W.: UPPAAL in a Nutshell. International Journal on Software Tools for Technology Transfer 1(1-2), 134–152 (1997)CrossRefMATHGoogle Scholar
  18. 18.
    Larsen, K.G., Yi, W.: Time abstracted bisimulation: Implicit specifications and decidability. Information and Communication 134, 75–103 (1997)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Lee, E., Messerschmitt, D.: Synchronous Data Flow. IEEE Proceedings 75(9), 1235–1245 (1987)CrossRefGoogle Scholar
  20. 20.
    Moonen, A., Bekooij, M., van den Berg, R., van Meerbergen, J.: Practical and Accurate Throughput Analysis with the Cyclo Static Dataflow Model. In: Proceedings of MASCOTS 2007, pp. 238–245. IEEE, Los Alamitos (2007)Google Scholar
  21. 21.
    de Nicola, R., Vaandrager, F.W.: Action versus state based logics for transition systems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  22. 22.
    Nicollin, X., Sifakis, J.: An Overview of Synthesis on Timed Process Algebras. In: Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp. 376–398. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  23. 23.
    Obal, W.D., Sanders, W.H.: State-Space Support for Path-Based Reward Variables. Performance Evaluation 35(3/4), 233–251 (1999)CrossRefMATHGoogle Scholar
  24. 24.
    Puterman, M.L.: Markov Decesion Processes. Wiley, Chichester (1995)Google Scholar
  25. 25.
    Poplavko, P., Basten, T., van Meerbergen, J.: Execution-Time Prediction for Dynamic Streaming Applications with Task-Level Parallelism. In: Proceedings of DSD 2007, pp. 228–235. IEEE, Los Alamitos (2007)Google Scholar
  26. 26.
    Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. PhD Thesis. Massachusetts Institute of Technology (1995)Google Scholar
  27. 27.
    Siram, S., Bhattacharyya, S.S.: Embedded Multiprocessors; Scheduling and Synchronization, 2nd edn. CRC Press, Boca Raton (2009)CrossRefGoogle Scholar
  28. 28.
    Sokolova, A.: Coalgebraic Analysis of Probabilistic Systems. PhD Thesis. Eindhoven University of Technology (2005)Google Scholar
  29. 29.
    Stuijk, S., Geilen, M.C.W., Basten, T.: SDF3: SDF For Free. In: Proceedings of ACSD 2006, pp. 276–278 (2006)Google Scholar
  30. 30.
    Tijms, H.C.: Stochastic Models; An Algorithmic Approach. John Wiley & Sons, Chichester (1994)MATHGoogle Scholar
  31. 31.
    Theelen, B.D.: Performance Modelling for System-Level Design. Ph.D. Thesis. Eindhoven University of Technology (2004)Google Scholar
  32. 32.
    Theelen, B.D.: A Performance Analysis Tool for Scenario-Aware Streaming Applications. In: Proceedings of QEST 2007 (2007)Google Scholar
  33. 33.
    Theelen, B.D., Geilen, M.C.W., Basten, T., Voeten, J.P.M., Gheorghita, S.V., Stuijk, S.: A Scenario-Aware Data Flow Model for Combined Long-Run Average and Worst-Case Performance Analysis. In: Proceedings of MEMOCODE 2006, pp. 185–194 (2006)Google Scholar
  34. 34.
    Theelen, B.D., Geilen, M.C.W., Stuijk, S., Gheorghita, S.V., Basten, T., Voeten, J.P.M., Ghamarian, A.H.: Scenario-Aware Dataflow. Technical Report ESR-2008-08, Eindhoven University of Technology (July 2008)Google Scholar
  35. 35.
    Voeten, J.P.M.: Performance Evaluation with Temporal Rewards. Performance Evaluation 50(2/3), 189–218 (2002)CrossRefMATHGoogle Scholar
  36. 36.
    Yi, W.: Real-time behaviour of asynchronous agents. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 502–520. Springer, Heidelberg (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bart Theelen
    • 1
  • Marc Geilen
    • 2
  • Jeroen Voeten
    • 1
    • 2
  1. 1.Embedded Systems InstituteThe Netherlands
  2. 2.Department of Electrical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations