Time-Bounded Verification of CTMCs against Real-Time Specifications

  • Taolue Chen
  • Marco Diciolla
  • Marta Kwiatkowska
  • Alexandru Mereacre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6919)


In this paper we study time-bounded verification of a finite continuous-time Markov chain (CTMC) \(\mathcal{C}\) against a real-time specification, provided either as a metric temporal logic (MTL) property ϕ, or as a timed automaton (TA) \(\mathcal{A}\). The key question is: what is the probability of the set of timed paths of \(\mathcal{C}\) that satisfy ϕ (or are accepted by \(\mathcal{A}\)) over a time interval of fixed, bounded length? We provide approximation algorithms to solve these problems. We first derive a bound N such that timed paths of \(\mathcal{C}\) with at most N discrete jumps are sufficient to approximate the desired probability up to ε. Then, for each discrete (untimed) path σ of length at most N, we generate timed constraints over variables determining the residence time of each state along σ, depending on the real-time specification under consideration. The probability of the set of timed paths, determined by the discrete path and the associated timed constraints, can thus be formulated as a multidimensional integral. Summing up all such probabilities yields the result. For MTL, we consider both the continuous and the pointwise semantics. The approximation algorithms differ mainly in constraints generation for the two types of specifications.


Model Check Temporal Logic Linear Constraint Time Automa Clock Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM 43(1), 116–146 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alur, R., Henzinger, T.A.: A Really Temporal Logic. J. ACM 41(1), 181–204 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Alur, R., Henzinger, T.A.: Real-time logics: Complexity and expressiveness. In: LICS, pp. 390–401 (1990)Google Scholar
  5. 5.
    Alur, R., Kurshan, R.P., Viswanathan, M.: Membership questions for timed and hybrid automata. In: IEEE Real-Time Systems Symposium, pp. 254–263 (1998)Google Scholar
  6. 6.
    Baier, C., Cloth, L., Haverkort, B.R., Kuntz, M., Siegle, M.: Model checking Markov chains with actions and state labels. IEEE Trans. Software Eng. 33(4), 209–224 (2007)CrossRefGoogle Scholar
  7. 7.
    Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Model-checking algorithms for continuous-time Markov chains. IEEE Trans. Software Eng. 29(6), 524–541 (2003)CrossRefzbMATHGoogle Scholar
  8. 8.
    Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Performance evaluation and model checking join forces. Commun. ACM 53(9), 76–85 (2010)CrossRefGoogle Scholar
  9. 9.
    Baier, C., Hermanns, H., Katoen, J.-P., Haverkort, B.R.: Efficient computation of time-bounded reachability probabilities in uniform continuous-time Markov decision processes. Theor. Comput. Sci. 345(1), 2–26 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bouyer, P., Chevalier, F., Markey, N.: On the expressiveness of TPTL and MTL. Inf. Comput. 208(2), 97–116 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Barbot, B., Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: Efficient CTMC model checking of linear real-time objectives. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 128–142. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Bemporad, A., Fukuda, K., Torrisi, F.D.: Convexity recognition of the union of polyhedra. Comput. Geom. 18(3), 141–154 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computation. Springer, Heidelberg (1998)CrossRefzbMATHGoogle Scholar
  14. 14.
    Bouyer, P.: From Qualitative to Quantitative Analysis of Timed Systems. Mémoire d’habilitation, Université Paris 7, Paris, France (January 2009)Google Scholar
  15. 15.
    Chen, T., Diciolla, M., Kwiatkowska, M., Mereacre, A.: Time-bounded verification of CTMCs against real-time specifications. Tech. Rep. RR-11-06, Department of Computer Science, University of Oxford (2011)Google Scholar
  16. 16.
    Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: Quantitative model checking of continuous-time Markov chains against timed automata specifications. In: LICS, pp. 309–318 (2009)Google Scholar
  17. 17.
    Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: Model checking of continuous-time Markov chains against timed automata specifications. Logical Methods in Computer Science 7(1–2), 1–34 (2011)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J. ACM 42(4), 857–907 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Donatelli, S., Haddad, S., Sproston, J.: Model checking timed and stochastic properties with CSL\(^{\textrm{\uppercase{ta}}}\). IEEE Trans. Software Eng. 35(2), 224–240 (2009)CrossRefGoogle Scholar
  20. 20.
    Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: Time-bounded model checking of infinite-state continuous-time Markov chains. Fundam. Inform. 95(1), 129–155 (2009)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Hiriart-Urruty, J., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I.: Fundamentals. Springer, Heidelberg (1994)zbMATHGoogle Scholar
  22. 22.
    Jenkins, M., Ouaknine, J., Rabinovich, A., Worrell, J.: Alternating timed automata over bounded time. In: LICS, pp. 60–69. IEEE Computer Society, Los Alamitos (2010)Google Scholar
  23. 23.
    Katoen, J.-P., Zapreev, I.S.: Safe on-the-fly steady-state detection for time-bounded reachability. In: QEST, pp. 301–310 (2006)Google Scholar
  24. 24.
    Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Systems 2(4), 255–299 (1990)CrossRefGoogle Scholar
  25. 25.
    Lasserre, J.B., Zeron, E.S.: A Laplace transform algorithm for the volume of a convex polytope. J. ACM 48(6), 1126–1140 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Nickovic, D., Piterman, N.: From MTL to deterministic timed automata. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 152–167. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Ouaknine, J., Rabinovich, A., Worrell, J.: Time-bounded verification. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 496–510. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  28. 28.
    Ouaknine, J., Worrell, J.: On the decidability and complexity of metric temporal logic over finite words. Logical Methods in Computer Science 3(1) (2007)Google Scholar
  29. 29.
    Ouaknine, J., Worrell, J.: Towards a theory of time-bounded verification. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010 Part II. LNCS, vol. 6199, pp. 22–37. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  30. 30.
    Roux, O., Rusu, V.: Verifying time-bounded properties for ELECTRE reactive programs with stopwatch automata. In: Antsaklis, P.J., Kohn, W., Nerode, A., Sastry, S.S. (eds.) HS 1994 Part II. LNCS, vol. 999, pp. 405–416. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  31. 31.
    Schrijver, A.: Theory of linear and integer programming. Wiley-Interscience series in discrete mathematics and optimization. Wiley, Chichester (1999)zbMATHGoogle Scholar
  32. 32.
    Sharma, A., Katoen, J.-P.: Weighted lumpability on Markov chains. In: 8th Ershov Informatics Conference. LNCS (2011)Google Scholar
  33. 33.
    Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state programs. In: FOCS, pp. 327–338 (1985)Google Scholar
  34. 34.
    Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification (preliminary report). In: LICS, pp. 332–344 (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Taolue Chen
    • 1
  • Marco Diciolla
    • 1
  • Marta Kwiatkowska
    • 1
  • Alexandru Mereacre
    • 1
  1. 1.Department of Computer ScienceOxford UniversityOxfordUnited Kingdom

Personalised recommendations