Minimum Attention Controller Synthesis for Omega-Regular Objectives

  • Krishnendu Chatterjee
  • Rupak Majumdar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6919)


A controller for a discrete game with ω-regular objectives requires attention if, intuitively, it requires measuring the state and switching from the current control action. Minimum attention controllers are preferable in modern shared implementations of cyber-physical systems because they produce the least burden on system resources such as processor time or communication bandwidth. We give algorithms to compute minimum attention controllers for ω-regular objectives in imperfect information discrete two-player games. We show a polynomial-time reduction from minimum attention controller synthesis to synthesis of controllers for mean-payoff parity objectives in games of incomplete information. This gives an optimal EXPTIME-complete synthesis algorithm. We show that the minimum attention controller problem is decidable for infinite state systems with finite bisimulation quotients. In particular, the problem is decidable for timed and rectangular automata.


Switching Cost Reward Function Imperfect Information Priority Function Minimum Attention 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126(2), 183–236 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Anta, A., Tabuada, P.: On the minimum attention and anytime attention problems for nonlinear systems. In: CDC 2010. IEEE, Los Alamitos (2010)Google Scholar
  3. 3.
    Brockett, R.W.: Minimum attention control. In: CDC 1997. IEEE, Los Alamitos (1997)Google Scholar
  4. 4.
    Brockett, R.W.: Minimizing attention in a motion control context. In: CDC 2003. IEEE, Los Alamitos (2003)Google Scholar
  5. 5.
    Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strategies. Transactions of the AMS 138, 295–311 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cassez, F., Tripakis, S.: Fault diagnosis with static and dynamic observers. Fundam. Inform. 88(4), 497–540 (2008)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.F.: Algorithms for omega-regular games with imperfect information. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 287–302. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Chatterjee, K., Henzinger, T.A., Jurdziński, M.: Mean-payoff parity games. In: LICS 2005, pp. 178–187. IEEE, Los Alamitos (2005)Google Scholar
  9. 9.
    Chatterjee, K., Majumdar, R., Henzinger, T.A.: Controller synthesis with budget constraints. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 72–86. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Church, A.: Logic, arithmetic, and automata. In: Proceedings of the International Congress of Mathematicians, pp. 23–35. Institut Mittag-Leffler (1962)Google Scholar
  11. 11.
    Degorre, A., Doyen, L., Gentilini, R., Raskin, J.-F., Toruńczyk, S.: Energy and mean-payoff games with imperfect information. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 260–274. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Emerson, E.A., Jutla, C.: Tree automata, mu-calculus and determinacy. In: FOCS 1991, pp. 368–377. IEEE, Los Alamitos (1991)Google Scholar
  13. 13.
    Girard, A.: Synthesis using approximately bisimilar abstractions: state-feedback controllers for safety specifications. In: HSCC, pp. 111–120. ACM, New York (2010)CrossRefGoogle Scholar
  14. 14.
    Girard, A., Julius, A.A., Pappas, G.J.: Approximate simulation relations for hybrid systems. Discrete Event Dynamic Systems 18(2), 163–179 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gurevich, Y., Harrington, L.: Trees, automata, and games. In: STOC 1982, pp. 60–65. ACM, New York (1982)Google Scholar
  16. 16.
    Henzinger, T.A., Kopke, P.W.: Discrete-time control for rectangular hybrid automata. Theoretical Computer Science 221, 369–392 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Jobstmann, B.: Applications and Optimizations for LTL Synthesis. PhD thesis, Graz University of Technology (March 2007)Google Scholar
  18. 18.
    Kechris, A.: Classical Descriptive Set Theory. Springer, Heidelberg (1995)CrossRefzbMATHGoogle Scholar
  19. 19.
    Kloetzer, M., Belta, C.: A fully automated framework for control of linear systems from temporal logic specifications. IEEE Transactions on Automatic Control 53(1), 287–297 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Temporal logic-based reactive mission and motion planning. IEEE Transactions on Robotics 25(6), 1370–1381 (2009)CrossRefGoogle Scholar
  21. 21.
    Kupferman, O., Vardi, M.Y.: μ-calculus synthesis. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 497–507. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  22. 22.
    Kupferman, O., Vardi, M.Y.: Synthesis with incomplete informatio. In: Advances in Temporal Logic, pp. 109–127. Kluwer Academic Publishers, Dordrecht (2000)CrossRefGoogle Scholar
  23. 23.
    Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: FOCS 2005: Foundations of Computer Science, pp. 531–540 (2005)Google Scholar
  24. 24.
    Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed systems. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 229–242. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  25. 25.
    Martin, D.A.: Borel determinacy. Annals of Mathematics 102(2), 363–371 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Mazo, M., Davitian, A., Tabuada, P.: Pessoa: A tool for embedded controller synthesis. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 566–569. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Montestruque, L., Antsaklis, P.: On the model-based control of networked systems. Automatica 39(10), 1837–1843 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Pnueli, A.: The temporal logic of programs. In: FOCS 1977, pp. 46–57 (1977)Google Scholar
  29. 29.
    Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL 1989, pp. 179–190. ACM, New York (1989)Google Scholar
  30. 30.
    Pola, G., Girard, A., Tabuada, P.: Approximately bisimilar symbolic models for nonlinear control systems. Automatica 44(10), 2508–2516 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Rabin, M.O.: Automata on Infinite Objects and Church’s Problem. Conference Series in Mathematics, vol. 13. American Mathematical Society, Providence (1969)zbMATHGoogle Scholar
  32. 32.
    Ramadge, P.J.G., Wonham, W.M.: The control of discrete event systems. IEEE Transactions on Control Theory 77, 81–98 (1989)zbMATHGoogle Scholar
  33. 33.
    Reif, J.H.: The complexity of two-player games of incomplete information. Journal of Computer and System Sciences 29, 274–301 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Safra, S.: On the complexity of ω-automata. In: Proceedings of the 29th Annual Symposium on Foundations of Computer Science, pp. 319–327. IEEE Computer Society Press, Los Alamitos (1988)Google Scholar
  35. 35.
    Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Languages. Beyond Words. ch.7, vol. 3, pp. 389–455. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  36. 36.
    Thorsley, D., Teneketzis, D.: Active acquisition of information for diagnosis and supervisory control of discrete event systems. Discrete Event Dynamic Systems 17, 531–583 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theoretical Computer Science 200(1-2), 135–183 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Zwick, U., Paterson, M.S.: The complexity of mean payoff games on graphs. Theoretical Computer Science 158, 343–359 (1996)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Krishnendu Chatterjee
    • 1
  • Rupak Majumdar
    • 2
  1. 1.ISTAustria
  2. 2.MPI-SWSGermany

Personalised recommendations