Performance Evaluation of Schedulers in a Probabilistic Setting

  • Jean-Francois Kempf
  • Marius Bozga
  • Oded Maler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6919)


We show how to evaluate the performance of solutions to finite-horizon scheduling problems where task durations are specified by bounded uniform distributions. Our computational technique, based on computing the volumes of zones, constitutes a contribution to the computational study of scheduling under uncertainty and stochastic systems in general.


Schedule Problem Probabilistic Setting Model Check Time Stamp Qualitative Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdeddaïm, Y., Asarin, E., Maler, O.: Scheduling with timed automata. Theoretical Computer Science 354(2), 272–300 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alur, R., Bernadsky, M.: Bounded model checking for GSMP models of stochastic real-time systems. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 19–33. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking for probabilistic real-time systems. In: Leach Albert, J., Monien, B., Rodríguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 115–126. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  4. 4.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2), 172–206 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Asarin, E., Maler, O.: As soon as possible: Time optimal control for timed automata. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 19–30. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed automata. In: Proc. IFAC Symposium on System Structure and Control, pp. 469–474 (1998)Google Scholar
  8. 8.
    Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Model-checking algorithms for continuous-time Markov chains. IEEE Trans. Software Eng. 29(6), 524–541 (2003)CrossRefzbMATHGoogle Scholar
  9. 9.
    Ben-Salah, R., Bozga, M., Maler, O.: On interleaving in timed automata. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 465–476. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Bernadsky, M., Alur, R.: Symbolic analysis for GSMP models with one stateful clock. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 90–103. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Bouyer, P.: From Qualitative to Quantitative Analysis of Timed Systems. Mémoire d’habilitation, Université Paris (July 2009)Google Scholar
  12. 12.
    Bozga, M., Graf, S., Mounier, L.: IF-2.0: A validation environment for component-based real-time systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 343–348. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.): EEF School 2000 and FMPA 2000. LNCS, vol. 2090. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  14. 14.
    Carnevali, L., Grassi, L., Vicario, E.: State-density functions over DBM domains in the analysis of non-Markovian models. IEEE Trans. Software Eng. 35(2), 178–194 (2009)CrossRefGoogle Scholar
  15. 15.
    Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems, 2nd edn. Springer, Heidelberg (2008)CrossRefzbMATHGoogle Scholar
  16. 16.
    Cormen, T.T., Leiserson, C.E., Rivest, R.L.: Introduction to algorithms. MIT Press, Cambridge (1990)zbMATHGoogle Scholar
  17. 17.
    Daws, C., Olivero, A., Tripakis, S., Yovine, S.: The tool KRONOS. In: Hybrid Systems, pp. 208–219 (1995)Google Scholar
  18. 18.
    Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific, Singapore (1995)Google Scholar
  19. 19.
    Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems. In: Automatic Verification Methods for Finite State Systems, pp. 197–212 (1989)Google Scholar
  20. 20.
    Esparza, J., Heljanko, K.: Unfoldings – A Partial-Order Approach to Model Checking. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  21. 21.
    German, R.: Non-markovian analysis. In: Brinksma, E., et al. (eds.) [13], pp. 156–182.Google Scholar
  22. 22.
    Glynn, P.W.: A GSMP formalism for discrete event systems. Proceedings of the IEEE 77(1), 14–23 (1989)CrossRefGoogle Scholar
  23. 23.
    Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time systems. Information and Computation 111(2), 193–244 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Jurdzinski, M., Peled, D., Qu, H.: Calculating probabilities of real-time test cases. In: Grieskamp, W., Weise, C. (eds.) FATES 2005. LNCS, vol. 3997, pp. 134–151. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Kartson, D., Balbo, G., Donatelli, S., Franceschinis, G., Conte, G.: Modelling with Generalized Stochastic Petri Nets. John Wiley & Sons, Chichester (1994)zbMATHGoogle Scholar
  26. 26.
    Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. International Journal on Software Tools for Technology Transfer (STTT) 1(1), 134–152 (1997)CrossRefzbMATHGoogle Scholar
  27. 27.
    Lugiez, D., Niebert, P., Zennou, S.: A partial order semantics approach to the clock explosion problem of timed automata. Theoretical Computer Science 345, 27–59 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Maler, O.: On optimal and reasonable control in the presence of adversaries. Annual Reviews in Control 31(1), 1–15 (2007)CrossRefGoogle Scholar
  29. 29.
    Maler, O., Larsen, K.G., Krogh, B.H.: On zone-based analysis of duration probabilistic automata. In: INFINITY, pp. 33–46 (2010)Google Scholar
  30. 30.
    Vicario, E., Sassoli, L., Carnevali, L.: Using stochastic state classes in quantitative evaluation of dense-time reactive systems. IEEE Trans. Software Eng. 35(5), 703–719 (2009)CrossRefGoogle Scholar
  31. 31.
    Zhao, J.: Partial order path technique for checking parallel timed automata. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 417–432. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jean-Francois Kempf
    • 1
  • Marius Bozga
    • 1
  • Oded Maler
    • 1
  1. 1.CNRS-VERIMAGUniversity of GrenobleFrance

Personalised recommendations