Efficient Bounded Reachability Computation for Rectangular Automata

  • Xin Chen
  • Erika Ábrahám
  • Goran Frehse
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6945)


We present a new approach to compute the reachable set with a bounded number of jumps for a rectangular automaton. The reachable set under a flow transition is computed as a polyhedron which is represented by a conjunction of finitely many linear constraints. If the bound is viewed as a constant, the computation time is polynomial in the number of variables.


Hybrid System Hybrid Automaton Support Hyperplane Bounded Number Dimensional Hyperplane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Henzinger, T.A., Ho, P., Wong-Toi, H.: Algorithmic analysis of nonlinear hybrid systems. IEEE Transactions on Automatic Control 43(4), 540–554 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Preußig, J., Kowalewski, S., Wong-Toi, H., Henzinger, T.A.: An algorithm for the approximative analysis of rectangular automata. In: Ravn, A.P., Rischel, H. (eds.) FTRTFT 1998. LNCS, vol. 1486, pp. 228–240. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Wong-Toi, H., Preußig, J.: A procedure for reachability analysis of rectangular automata. In: Proc. of American Control Conference, vol. 3, pp. 1674–1678 (2000)Google Scholar
  5. 5.
    Doyen, L., Henzinger, T.A., Raskin, J.: Automatic rectangular refinement of affine hybrid systems. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 144–161. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chutinan, A., Krogh, B.H.: Computing polyhedral approximations to flow pipes for dynamic systems. In: Proc. of CDC 1998. IEEE Press, Los Alamitos (1998)Google Scholar
  8. 8.
    Stursberg, O., Krogh, B.H.: Efficient representation and computation of reachable sets for hybrid systems. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 482–497. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: Hytech: A model checker for hybrid systems. Software Tools for Technology Transfer (1), 110–122 (1997)Google Scholar
  11. 11.
    Frehse, G.: Phaver: Algorithmic verification of hybrid systems past hytech. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, Heidelberg (1995)zbMATHGoogle Scholar
  13. 13.
    Chen, X., Abraham, E., Frehse, G.: Efficient bounded reachability computation for rectangular automata. Technical report, RWTH Aachen University (2011),
  14. 14.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  15. 15.
    Fukuda, K.: From the zonotope construction to the minkowski addition of convex polytopes. J. Symb. Comput. 38(4), 1261–1272 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Weibel, C., Fukuda, K.: Computing faces up to k dimensions of a minkowski sum of polytopes. In: Proc. of CCCG 2005, pp. 256–259 (2005)Google Scholar
  17. 17.
    Henzinger, T.A.: The theory of hybrid automata. In: Proc. of LICS 1996, pp. 278–292 (1996)Google Scholar
  18. 18.
    Fukuda, K.: cdd, cddplus and cddlib homepage,
  19. 19.
    Frehse, G., Le Guernic, C., Donzé, A., Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., Maler, O.: Spaceex: Scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Xin Chen
    • 1
  • Erika Ábrahám
    • 1
  • Goran Frehse
    • 2
  1. 1.RWTH Aachen UniversityGermany
  2. 2.Université Grenoble 1 Joseph FourierVerimagFrance

Personalised recommendations