Entropy of Audio Fingerprints for Unobtrusive Device Authentication

  • Stephan Sigg
  • Matthias Budde
  • Yusheng Ji
  • Michael Beigl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6967)

Abstract

Context-based authentication methods enable the unobtrusive establishment of authentication or even secure keys. While several context-based authentication methods have been proposed recently, often the entropy of the seed for the cryptographic keys is not exploited. We study the entropy of audio fingerprints which can be utilized to pair devices in close proximity. In this work, for 600 audio fingerprints from five distinct audio classes recorded at three different locations, we applied 7490 statistical tests from the dieHarder battery of statistical tests.

Keywords

Audio fingerprinting Entropy Pervasive computing Unobtrusive device authentication 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mayrhofer, R., Gellersen, H.: Spontaneous mobile device authentication based on sensor data. Information Security Technical Report 13(3), 136–150 (2008)CrossRefGoogle Scholar
  2. 2.
    Mayrhofer, R., Gellersen, H.: Shake well before use: Intuitive and secure pairing of mobile devices. IEEE Transactions on Mobile Computing 8(6) (2009)Google Scholar
  3. 3.
    Mayrhofer, R.: The Candidate Key Protocol for Generating Secret Shared Keys from Similar Sensor Data Streams. In: Stajano, F., Meadows, C., Capkun, S., Moore, T. (eds.) ESAS 2007. LNCS, vol. 4572, pp. 1–15. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Mayrhofer, R., Gellersen, H.: Shake well before use: Authentication based on accelerometer data. In: LaMarca, A., Langheinrich, M., Truong, K.N. (eds.) Pervasive 2007. LNCS, vol. 4480, pp. 144–161. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Bichler, D., Stromberg, G., Huemer, M., Loew, M.: Key generation based on acceleration data of shaking processes. In: Krumm, J., Abowd, G.D., Seneviratne, A., Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 304–317. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Wang, A.: An Industrial Strength Audio Search Algorithm. In: International Conference on Music Information Retrieval, ISMIR (2003)Google Scholar
  7. 7.
    Wang, A.: The Shazam music recognition service. Communications of the ACM 49(8), 48 (2006)CrossRefGoogle Scholar
  8. 8.
    Juels, A., Wattenberg, M.: A Fuzzy Commitment Scheme. In: Sixth ACM Conference on Computer and Communications Security, pp. 28–36 (1999)Google Scholar
  9. 9.
    Reed, I., Solomon, G.: Polynomial codes over certain finite fields. Journal of the Society for Industrial and Applied Mathematics, 300–304 (1960)Google Scholar
  10. 10.
    Brown, R.G.: Dieharder: A random number test suite (2011), http://www.phy.duke.edu/~rgb/General/dieharder.php
  11. 11.
    Kuiper, N.: Tests concerning random points on a circle. In: Proceedings of the Koinklijke Nederlandse Akademie van Wetenschappen, vol. Series a 63, pp. 38–47 (1962)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Stephan Sigg
    • 1
  • Matthias Budde
    • 2
  • Yusheng Ji
    • 1
  • Michael Beigl
    • 2
  1. 1.National Institute of InformaticsTokyoJapan
  2. 2.KIT, TecOKarlsruheGermany

Personalised recommendations