Distributed Spatial Reasoning for Wireless Sensor Networks

  • Hedda R. Schmidtke
  • Michael Beigl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6967)

Abstract

Location-aware systems are mobile or spatially distributed computing systems, such as smart phones or sensor nodes in wireless sensor networks, enabled to react flexibly to changing environments. Due to severe restrictions of computational power on these platforms and real-time demands, most current solutions do not support advanced spatial reasoning. Qualitative Spatial Reasoning (QSR) and granularity are two mechanisms that have been suggested in order to make reasoning about spatial environments tractable. We propose an approach for combining these two techniques, so as to obtain a light-weight QSR mechanism, called partial order QSR (for brevity: PQSR), that is fast enough to allow application on small, low-cost computing devices. The key idea of PQSR is to use a core fragment of typical QSR relations, which can be expressed with partial orders and their linearizations, and to additionally delimit reasoning about these relations with a size-based granularity mechanism.

Keywords

Partial order reasoning contextual reasoning qualitative spatial reasoning context-aware computing distributed reasoning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beigl, M., Gray, P., Salber, D. (eds.): Workshop on Location Modeling for Ubiquitous Computing (2001), http://www.teco.edu/locationws/
  2. 2.
    Berchtold, M., Riedel, T., Decker, C., Beigl, M., Bittel, C.: Quality of location: estimation, system integration and application. In: INSS. IEEE, Los Alamitos (2008)Google Scholar
  3. 3.
    Choudhury, T., Quigley, A.J., Strang, T., Suginuma, K. (eds.): LoCA 2009. LNCS, vol. 5561. Springer, Heidelberg (2009)Google Scholar
  4. 4.
    Clementini, E., Billen, R.: Modeling and computing ternary projective relations between regions. IEEE Transactions on Knowledge and Data Engineering 18(6), 799–814 (2006)CrossRefGoogle Scholar
  5. 5.
    Cohn, A.G., Hazarika, S.M.: Qualitative spatial representation and reasoning: An overview. Fundamenta Informaticae 46(1-2), 1–29 (2001)MathSciNetMATHGoogle Scholar
  6. 6.
    Ding, Y., Laue, F., Schmidtke, H.R., Beigl, M.: Sensing spaces: Light-weight monitoring of industrial facilities. In: 5th Workshop on Behaviour Monitoring and Interpretation (2010)Google Scholar
  7. 7.
    Euzenat, J.: Granularity in relational formalisms - with application to time and space representation. Computational Intelligence 17(3), 703–737 (2001)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Frank, A.: Qualitative spatial reasoning about distances and directions in geographic space. Journal of Visual Languages and Computing 3, 343–371 (1992)CrossRefGoogle Scholar
  9. 9.
    Gerevini, A., Renz, J.: Combining topological and size information for spatial reasoning. Artif. Intell. 137(1-2), 1–42 (2002)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Goyal, R., Egenhofer, M.: Consistent queries over cardinal directions across different levels of detail. In: 11th International Workshop on Database and Expert Systems Applications, pp. 876–880. IEEE Computer Society, Los Alamitos (2000)CrossRefGoogle Scholar
  11. 11.
    Hernández, D.: Qualitative Representation of Spatial Knowledge. LNCS, vol. 804. Springer, Heidelberg (1994)CrossRefMATHGoogle Scholar
  12. 12.
    Hobbs, J.: Granularity. In: Josh, A.K. (ed.) Ninth International Joint Conference on Artificial Intelligence, pp. 432–435. Morgan Kaufmann, Los Angeles (1985)Google Scholar
  13. 13.
    Ligozat, G.: Reasoning about cardinal directions. Journal of Visual Languages and Computing 9, 23–44 (1998)CrossRefGoogle Scholar
  14. 14.
    Randell, D., Cui, Z., Cohn, A.: A spatial logic based on region and connection. In: Knowledge Representation and Reasoning, pp. 165–176. Morgan Kaufmann, San Francisco (1992)Google Scholar
  15. 15.
    Schmidtke, H.R.: The house is north of the river: Relative localization of extended objects. In: Montello, D. (ed.) COSIT 2001. LNCS, vol. 2205, pp. 415–430. Springer, Heidelberg (2001)Google Scholar
  16. 16.
    Schmidtke, H.R.: A geometry for places: Representing extension and extended objects. In: Kuhn, W., Worboys, M., Timpf, S. (eds.) COSIT 2003. LNCS, vol. 2825, pp. 235–252. Springer, Heidelberg (2003)Google Scholar
  17. 17.
    Schmidtke, H.R.: Granularity as a parameter of context. In: Dey, A.K., Kokinov, B., Leake, D.B., Turner, R. (eds.) CONTEXT 2005. LNCS (LNAI), vol. 3554, pp. 450–463. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Schmidtke, H.R., Woo, W.: A size-based qualitative approach to the representation of spatial granularity. In: Veloso, M.M. (ed.) International Joint Conference on Artificial Intelligence, pp. 563–568 (2007)Google Scholar
  19. 19.
    Schmidtke, H.R., Woo, W.: Towards ontology-based formal verification methods for context aware systems. In: Tokuda, H., Beigl, M., Friday, A., Brush, A.J.B., Tobe, Y. (eds.) Pervasive 2009. LNCS, vol. 5538, pp. 309–326. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Schmidtke, H.R., Beigl, M.: Positions, regions, and clusters: Strata of granularity in location modelling. In: Dillmann, R., Beyerer, J., Hanebeck, U.D., Schultz, T. (eds.) KI 2010. LNCS (LNAI), vol. 6359, pp. 272–279. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hedda R. Schmidtke
    • 1
  • Michael Beigl
    • 1
  1. 1.Pervasive Computing Systems, TecOKarlsruheGermany

Personalised recommendations