SenST*: Approaches for Reducing the Energy Consumption of Smartphone-Based Context Recognition

  • Maximilian Schirmer
  • Hagen Höpfner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6967)


Modern smartphones provide sensors that can be used to describe the current context of the device and its user. Contextual knowledge allows software systems to adapt to personal preferences of users and to make data processing context-aware. Different sensors or measurement approaches used for recognizing the values of particular context elements vary greatly in their energy consumption. This paper presents approaches for reducing the energy consumption of utilizing smartphone sensors. We discuss sensor substitution strategies as well as logical dependencies among sensor measurements. The paper describes the first milestone towards a generalization of such strategies. Furthermore, We show that energy awareness benefits from a more abstract view on context elements.


Context Recognition Energy Awareness Smartphone Sensors Sensor Triggering Sensor Substitution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ABIresearch: Abiresearch mobile device user interfaces report. Website (September 2010),
  2. 2.
    Azizyan, M., Constandache, I., Choudhury, R.R.: Surroundsense: Mobile phone localization via ambience fingerprinting. In: Proc. of the 15th Annual Int. Conference on Mobile Computing and Networking, pp. 261–272. ACM Press, New York (2009)CrossRefGoogle Scholar
  3. 3.
    Barzilai, A.: Improving a Geophone to Produce an Affordable Broadband Seisometer. Ph.D. thesis, Department of Mechanical Engineeering, Stanford University (January 2000)Google Scholar
  4. 4.
    Baumgarten, U., Schmohl, R.: Context-aware computing: a survey preparing a generalized approach. Lecture Notes in Engineering and Computer Science, vol. 2168(1), pp. 744–750 (2008)Google Scholar
  5. 5.
    Beckmann, C., Schirmer, M., Paul-Stueve, T., Gross, T.: Sensation: Eine plattform zur entwicklung ubiquitärer umgebungen. In: Mensch & Computer - 7. Fachübergreifende Konferenz für interaktive und kooperative Medien, Oldenbourg, München, pp. 273–276 (2007)Google Scholar
  6. 6.
    Beigl, M., Gellersen, H.-W., Schmidt, A.: Mediacups: Experience with design and use of computer-augmented everyday artefacts. Computer Networks 35(4), 401–409 (2001)CrossRefGoogle Scholar
  7. 7.
    Bolchini, C., Curino, C.A., Quintarelli, E., Schreiber, F.A., Tanca, L.: A data-oriented survey of context models. SIGMOD Record 36(4), 19–26 (2007)CrossRefGoogle Scholar
  8. 8.
    Brown, P.J., Bovey, J.D., Chen, X.: Context-aware applications: from the laboratory to the marketplace. IEEE Pers. Comm. 4(5), 58–64 (1997), CrossRefGoogle Scholar
  9. 9.
    Bulusu, N., Heidemann, J., Estrin, D.: Gps-less low cost outdoor localization for very small devices. IEEE Pers. Comm. 7(5), 28–34 (2000)CrossRefGoogle Scholar
  10. 10.
    Bunse, C., Höpfner, H.: Resource substitution with components — optimizing energy consumption. In: Cordeiro, J., Shishkov, B., Ranchordas, A.K., Helfert, M. (eds.) Proc. of the 3rd Int. Conference on Software and Data Technologie, vol. SE/GSDCA/MUSE, pp. 28–35. INSTICC Press, Setúbal (2008)Google Scholar
  11. 11.
    Bunse, C., Höpfner, H., Roychoudhury, S., Mansour, E.: Energy efficient data sorting using standard sorting algorithms. In: Cordeiro, J., Ranchordas, A., Shishkov, B. (eds.) Software and Data Technologies. CCIS, vol. 50, pp. 247–260. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and evaluation of a wide-area event notification service. ACM Transactions on Computer Systems 19(3), 332–383 (2001)CrossRefGoogle Scholar
  13. 13.
    Dey, A.K.: Understanding and using context. Pers. Ubiquitous Computing 5(1), 4–7 (2001)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Dey, A.K.: Providing Architectural Support for Building Context-Aware Applications. Ph.D. thesis, College of Computing, Georgia Institute of Technology (December 2000)Google Scholar
  15. 15.
    Fitzpatrick, G., Mansfield, T., Kaplan, S., Arnold, D., Phelps, T., Segall, B.: Augmenting the workaday world with elvin. In: Proc. of the Sixth European Conference on Computer-Supported Cooperative Work, pp. 431–450. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  16. 16.
    Garin, L.J., Chansarkar, M.M., Miocinovic, S., Norman, C., Hilgenberg, D.: Wireless assisted gps-sirf architecture and field test results. In: Proc. of the 12th Int. Technical Meeting of the Satellite Division of The Institute of Navigation, pp. 489–498. The Institute of Navigation, Inc, Manassas (1999)Google Scholar
  17. 17.
    Gross, T., Prinz, W.: Awareness in context: A lightweight approach. In: Proc. of the 8th European Conference on Computer-Supported Cooperative Work, pp. 295–314. Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  18. 18.
    Honan, M.: iphone credit card reader lets you accept plastic anywhere. Website (Februar 2010),
  19. 19.
    Höpfner, H., Bunse, C.: Towards an energy-consumption based complexity classification for resource substitution strategies. In: Proc. of the 22. Workshop on Foundations of Databases. CEUR Workshop Proceeding,, vol. 581 (May 2010),
  20. 20.
    Jevtic, S., Kotowsky, M., Dick, R.P., Dinda, P.A., Dowding, C.: Lucid dreaming: Reliable analog event detection for energy-constrained applications. In: Proc. of the 6th Int. Conference on Information Processing in Sensor Networks, pp. 350–359. ACM Press, New York (2007)CrossRefGoogle Scholar
  21. 21.
    Kansal, A., Zhao, F.: Fine-grained energy profiling for power-aware application design. ACM SIGMETRICS Performance Evaluation Review 36(2), 26–31 (2008)CrossRefGoogle Scholar
  22. 22.
    Kenny, T.: Sensor Fundamentals. In: Wilson, J.S. (ed.) Sensor Technology Handbook, Newnes, ch. 1 (December 2004)Google Scholar
  23. 23.
    Lieberman, H., Selker, T.: Out of context: Computer systems that adapt to, and learn from, context. IBM Systems Journal 39(3&4), 617–632 (2000)CrossRefGoogle Scholar
  24. 24.
    Lin, K., Kansal, A., Lymberopoulos, D., Zhao, F.: Energy-accuracy trade-off for continuous mobile device location. In: Proc. of the 8th Int. Conference on Mobile Systems, Applications, and Services, pp. 285–297. ACM Press, New York (2010)Google Scholar
  25. 25.
    Mohan, P., Padmanabhan, V.N., Ramjee, R.: Nericell: Rich monitoring of road and traffic conditions using mobile smartphones. In: Proc. of the 6th ACM Conference on Embedded Network Sensor Systems, pp. 323–336. ACM Press, New York (2008)CrossRefGoogle Scholar
  26. 26.
    Nicholson, A.J., Noble, B.D.: Breadcrumbs: Forecasting mobile connectivity. In: Proc. of the 14th ACM Int. Conf. on Mobile Computing and Networking, pp. 46–57. ACM Press, New York (2008)Google Scholar
  27. 27.
    Pietzuch, P.R., Bacon, J.: Hermes: A distributed event-based middleware architecture. In: Proc. of the 22nd Int. Conference on Distributed Computing Systems, pp. 611–618. IEEE Computer Society, Los Alamitos (2002)Google Scholar
  28. 28.
    Rittenbruch, M.: Atmosphere: A framework for contextual awareness. Int. Journal of Human-Computer Interaction 14(2), 159–180 (2002)CrossRefGoogle Scholar
  29. 29.
    Roos, T., Myllymäku, P., Tirri, H., Misikangas, P., Sievänen, J.: A probabilistic approach to wlan user location estimation. Int. Jrnl. Wireless Information Networks 9(3), 155–164 (2002)CrossRefGoogle Scholar
  30. 30.
    Schilit, B.N., Adams, N., Want, R.: Context-aware computing applications. In: Proc. of the 1st IEEE Workshop on Mobile Computing Systems and Applications, pp. 85–90. IEEE Computer Society, Los Alamitos (1994), Google Scholar
  31. 31.
    Schmidt, A., Beigl, M., Gellersen, H.-W.: There is more to context than location. Elsevier Computer & Graphics Journal 23(6) (December 1999)Google Scholar
  32. 32.
    Schmidt, A., Laerhoven, K.V.: How to build smart appliances? IEEE Pers. Comm. 8(4), 66–71 (2001)CrossRefGoogle Scholar
  33. 33.
    Segal, B., Arnold, D.: Elvin has left the building: A publish/subscriber notification service with quenching. In: Proc. of the 1997 Australian Open Systems Users Group Conference – AUUG (1997)Google Scholar
  34. 34.
    Seydim, A.Y., Dunham, M.H., Kumar, V.: Location-Dependent Query Processing. In: Proc. of the 2nd ACM Int. Workshop on Data Engineering for Wireless and Mobile Access, pp. 47–53. ACM Press, New York (2001)CrossRefGoogle Scholar
  35. 35.
    Siewiorek, D., Smailagic, A., Furukawa, J., Moraveji, N., Reiger, K., Shaffer, J.: Sensay: A context-aware mobile phone. In: Proc. of the 7th IEEE Int. Symposium on Wearable Computers, pp. 248–257. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  36. 36.
    Veijalainen, J., Ojanen, E., Haq, M.A., Vahteala, V.-P., Matsumoto, M.: Energy Consumption Tradeoffs for Compressed Wireless Data at a Mobile Terminal. IEICE Transactions on Communications E87-B(5), 1123–1130 (2004)Google Scholar
  37. 37.
    Ye, Z., Chen, X., Li, Z.: Video based mobile location search with large set of sift points in cloud. In: Proc. of the 2010 Multimedia Workshop on Mobile Cloud Media Computing, pp. 25–30. ACM Press, New York (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Maximilian Schirmer
    • 1
  • Hagen Höpfner
    • 1
  1. 1.Bauhaus University of WeimarWeimarGermany

Personalised recommendations