An Empirical Study on Web Search Behavior through the Investigation of a User-Clustered Query Session

  • Hyun Kyu Park
  • In Ho Cho
  • Sook Young Ji
  • Joong Seek Lee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6967)

Abstract

Web search behavior is being diversified. And the diversification of web search behavior makes query both sporadic and non-sequential. In this case, it is difficult to understand why and how users search any information. Context of web search makes it possible to classify sporadic and non-sequential queries according to each interest. However, only the user him/herself can identify the context of web search behavior exactly. Hence, it is necessary to conduct a client-side research in which users are deeply engaged. The purpose of this research is to develop and apply the methodology that systematically examines the web search behavior and its context. To achieve this, (1) client-side log data is collected, then participants (2) clustered the queries based on context and (3) filled in a questionnaire as to each clustered queries. Also, interviews were conducted in each person. The finding of this study is that the features of UCQS are different from previous studies. Furthermore, we identified the flow of users’ web search behavior.

Keywords

Web Search Behavior User-Clustered Query Session Context of Web Search Behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Spink, A., Park, M., Jansen, J.B.: Multitasking during Web search sessions. Inf. Proc. Manage. 42(1), 264–275 (2006)CrossRefGoogle Scholar
  2. 2.
    Patrick Dubroy, R.B.: A Study of Tabbed Browsing Among Mozilla Firefox Users. In: CHI 2010: Browsing, The research on the actual condition of the internet usage in Korea. KISA, Seoul, pp. 673–682 (2009)Google Scholar
  3. 3.
    Jansen, B.J., Pooch, U.: A review of Web searching studies and a framework for future research. Journal of the American Society for Information Science and Technology 52(3), 235–246 (2001)CrossRefGoogle Scholar
  4. 4.
    Hoelscher, C.: How Internet experts search for information on the Web. In: World Conference of the World Wide Web, Internet, and Intranet, Association for the Advancement of Computing in Education, Orlando (1998); (Note: Published on CD-ROM with no page numbers)Google Scholar
  5. 5.
    Jansen, B.J., Spink, A., Bateman, J., Saracevic, T.: Real life information retrieval: A study of user queries on the web. SIGIR Forum 32(1), 5–17 (1998)CrossRefGoogle Scholar
  6. 6.
    Jansen, B.J., Spink, A., Saracevic, T.: Real life, real users, and real needs: A study and analysis of user queries on the web. Information Processing and Management 36(2), 207–227 (2000)CrossRefGoogle Scholar
  7. 7.
    Silverstein., C., Marais., H., Henzinger., M., Moricz, M.: Analysis of a very large web search engine query log. SIGIR Forum 33(1), 6–12 (1999)CrossRefGoogle Scholar
  8. 8.
    Jansen, B.J., Spink, A., Pedersen, J.: A temporal comparison of AltaVista Web searching. Journal of the American Society for Information Science and Technology 56, 559–570 (2005)CrossRefGoogle Scholar
  9. 9.
    Jansen, Spink: How are we searching the World Wide Web? A comparison of nine search engine transaction logs. Information Processing and Management 42(1), 248–263 (2006)CrossRefGoogle Scholar
  10. 10.
    Zhang, M., Jansen, B.J., Spink, A.: Information Searching Tactics of Web Searchers. American Society for Information Science and Technology 43, 1–14 (2006)Google Scholar
  11. 11.
    Catledge, L.D., Pitkow, J.E.: Characterizing browsing strategies in the World-Wide Web. Computer Networks and ISDN System 27(6), 1065–1073 (1995)CrossRefGoogle Scholar
  12. 12.
    Jones, R., Klinkner, K.L.: Beyond the Session Timeout: Automatic Hierarchical Segmentation of Search Topics in Query Logs. In: 17th ACM Conference on Information and knowledge Management, pp. 699–707. ACM, New York (2008)Google Scholar
  13. 13.
    Anick, P.: Using Terminological Feedback for Web Search Refinement – Alog-based Study. In: 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval, pp. 88–95. ACM., New York (2003)Google Scholar
  14. 14.
    He, D., Göker, A.: Detecting session boundaries from Web user logs. In: 22nd Annual Colloquium on IR 5Research IRSG 2000, Cambridge, UK, pp. 57–66 (2000)Google Scholar
  15. 15.
    Spink, A., Park, M., Jansen, B.J., Pedersen, J.: Multitasking during Web search Sessions. Information Processing and Management 42(1), 264–275 (2006)CrossRefGoogle Scholar
  16. 16.
    Jansen, B.J., Spink, A., Blakely, C., Koshman, S.: Defining a Session on Web Search Engines. JASIST 58, 862–871 (2007)CrossRefGoogle Scholar
  17. 17.
    Boldi, P., Bonchi, F., Castillo, C., Donato, D., Gionis, A., Vigna, S.: The Query-flow Graph: Model and Applications. In: 17thGoogle Scholar
  18. 18.
    Jones, R., Klinkner, K.L.: Beyond the Session Timeout: Automatic Hierarchical Segmentation of Search Topics in Query Logs. In: 17th ACM conference on Information and knowledge management, pp. 699–707. ACM, New York (2008)Google Scholar
  19. 19.
    Kelly, D., Cool, C.: The effects of topic familiarity on information search behavior. In: Hersh, W., Marchionini, G. (eds.) Proceedings of the Second ACM/IEEE Joint Conference on Digital Libraries (JCDL 2002), pp. 74–75. ACM Press, New York (2002)CrossRefGoogle Scholar
  20. 20.
    Kellar, M., Watters, C., Shepherd, M.: A field study characterizing Web-based information-seeking tasks. Journal of the American Society for Information Science and Technology 58, 999–1018 (2007)CrossRefGoogle Scholar
  21. 21.
    Saracevic, T.: The stratified model of information retrieval interaction: Extension and applications. In: Schwartz, C.S. (ed.) Proceedings of the Annual Meeting of the American Society for Information Science (ASIS 1997), pp. 3–9. American Society for Information Science and Technology, MD (1997)Google Scholar
  22. 22.
    Ingwersen, P., Jarvelin, K.: Information retrieval in context. In: Ingwersen, P., Belkin, N.J. (eds.) Proceedings of the SIGIR 2004 Workshop on Information Retrieval in Context, pp. 6–9. ACM Press, New York (2004)Google Scholar
  23. 23.
    Belkin, N.J.: Ineffable concepts in information retrieval. In: Sparck Jones, K. (ed.) Information retrieval experiment, pp. 44–58. Butterworth, London (1981)Google Scholar
  24. 24.
    Cool, C.: The concept of situation in information science. Annual Review of Information Science and Technology 35, 5–42 (2001)Google Scholar
  25. 25.
    Vakkari, P.: Task-based information searching. Annual Review of Information Science and Technology 37, 413–464 (2003)CrossRefGoogle Scholar
  26. 26.
    Choo, C., Detlor, B., Turnbull, D.: Information seeking on the web: An integrated model of browsing and searching. First Monday 5(2) (2000), http://www.firstmonday.org/ISSUES/issue5_2/choo/index.html
  27. 27.
    Lin, S.J., Belkin, N.J.: Modeling multiple information seeking episodes. In: Roderer, N. (ed.) Proceedings of the Annual Conference of the American Society for Information Science (ASIS 2000), pp. 133–146. American Society for Information Science and Technology, Silver Spring (2000)Google Scholar
  28. 28.
  29. 29.
    Fisher, K.E., Lynne, S.E., Mckechnie, E.F.: Theories of Information behavior. Information today (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hyun Kyu Park
    • 1
  • In Ho Cho
    • 1
  • Sook Young Ji
    • 1
  • Joong Seek Lee
    • 1
  1. 1.Department of Digital Contents ConvergenceSeoul National UniversitySeoulKorea

Personalised recommendations