Advertisement

Fast Generation of Near-Optimal Plans for Eco-Efficient Stowage of Large Container Vessels

  • Dario Pacino
  • Alberto Delgado
  • Rune Møller Jensen
  • Tom Bebbington
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6971)

Abstract

Eco-efficient stowage plans that are both competitive and sustainable have become a priority for the shipping industry. Stowage planning is NP-hard and is a challenging optimization problem in practice. We propose a new 2-phase approach that generates near-optimal stowage plans and fulfills industrial time and quality requirements. Our approach combines an integer programming model for assigning groups of containers to storage areas of the vessel over multiple ports, and a constraint programming and local search procedure for stowing individual containers.

Keywords

Integer Programming Mixed Integer Programming Constraint Programming Container Ship Integer Programming Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambrosino, D., Anghinolfi, D., Paolucci, M., Sciomachen, A.: An experimental comparison of different heuristics for the master bay plan problem. In: Proceedings of the 9th Int. Symposium on Experimental Algorithms, pp. 314–325 (2010)Google Scholar
  2. 2.
    Ambrosino, D., Sciomachen, A.: A constraint satisfaction approach for master bay plans. Maritime Engineering and Ports 36, 175–184 (1998)Google Scholar
  3. 3.
    Ambrosino, D., Sciomachen, A.: Impact of yard organization on the master bay planning problem. Maritime Economics and Logistics (5), 285–300 (2003)CrossRefGoogle Scholar
  4. 4.
    Aslidis, A.H.: Optimal Container Loading. Master’s thesis, Massachusetts Institute of Technology (1984)Google Scholar
  5. 5.
    Avriel, M., Penn, M., Shpirer, N., Witteboon, S.: Stowage planning for container ships to reduce the number of shifts. Annals of Oper. Research 76, 55–71 (1998)CrossRefzbMATHGoogle Scholar
  6. 6.
    Botter, R., Brinati, M.A.: Stowage container planning: A model for getting an optimal solution. In: Proceedings of the 7th Int. Conf. on Computer Applications in the Automation of Shipyard Operation and Ship Design, pp. 217–229 (1992)Google Scholar
  7. 7.
    Davidor, Y., Avihail, M.: A method for determining a vessel stowage plan. Patent Publication WO9735266 (1996)Google Scholar
  8. 8.
    Delgado, A., Jensen, R.M., Schulte, C.: Generating optimal stowage plans for container vessel bays. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 6–20. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Dillingham, J., Perakis, A.N.: Design of an expert system for container stowage planning. In: Proceedings of the Fleet Management Technology Conference, Baltimore (1987)Google Scholar
  10. 10.
    Dubrovsky, O., Penn, G.L.M.: A genetic algorithm with a compact solution encoding for the container ship stowage problem. J. of Heuristics 8, 585–599 (2002)CrossRefGoogle Scholar
  11. 11.
    Flor, M.: Heuristic Algorithms for Solving the Container Ship Stowage Problem. Master’s thesis, Technion, Haifa, Isreal (1998)Google Scholar
  12. 12.
    Gecode Team: Gecode: Generic constraint development environment (2006), http://www.gecode.org (accessed July 12, 2011)
  13. 13.
    Giemesch, P., Jellinghaus, A.: Optimization models for the containership stowage problem. In: Proceedings of the Int. Conference of the German Operations Research Society (2003)Google Scholar
  14. 14.
    Guilbert, N., Paquin, B.: Container vessel stowage planning. Patent Publication US2010/0145501 (2010)Google Scholar
  15. 15.
    Gumus, M., Kaminsky, P., Tiemroth, E., Ayik, M.: A multi-stage decomposition heuristic for the container stowage problem. In: Proceedings of the 2008 MSOM Conference (2008)Google Scholar
  16. 16.
    Imai, A., Sasaki, K., Nishimura, E., Papadimitriou, S.: Multi-objective simultaneous stowage and load planning for a container ship with container rehandle in yard stacks. European Journal of Operational Research (171), 373–389 (2006)CrossRefzbMATHGoogle Scholar
  17. 17.
    Jensen, R.M.: On the complexity of container stowage planning: the capacitated zero-shift problem and the hatch overstow problem. Tech. Rep. ITU-TR-137, IT University of Copenhagen (2010)Google Scholar
  18. 18.
    Kang, J., Kim, Y.: Stowage planning in maritime container transportation. Journal of the Operations Research Society 53(4), 415–426 (2002)CrossRefzbMATHGoogle Scholar
  19. 19.
    Li, F., Tian, C.H., Cao, R., Ding, W.: An integer linear programming for container stowage problem. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part I. LNCS, vol. 5101, pp. 853–862. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Nugroho, S.: Case-based stowage planning for container ships. In: The Int. Logistics Congress (2004)Google Scholar
  21. 21.
    Pacino, D., Jensen, R.M.: A local search extended placement heuristic for stowing under deck bays of container vessels. In: The 4th Int. Workshop on Freight Transportation and Logistics, ODYSSEUS 2009 (2009)Google Scholar
  22. 22.
    Sciomachen, A., Tanfani, A.: The master bay plan problem: a solution method based on its connection to the three-dimensional bin packing problem. IMA Journal of Management Mathematics 14, 251–269 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Shields, J.J.: Container stowage: A computer aided pre-planning system. Marine Technology 21(4) (1984)Google Scholar
  24. 24.
    Tupper, E.C.: Introdution to Naval Architecture. Elsevier, Amsterdam (2009)Google Scholar
  25. 25.
    Webster, W.C., Van Dyke, P.: Container loading. a container allocation model: I - introduction background, II - strategy, conclusions. In: Proceedings of Computer-Aided Ship Design Engineering Summer Conference, University of Michigan (1970)Google Scholar
  26. 26.
    Wilson, I.D., Roach, P.A.: of combinatorial optimization applied to container-ship stowage planning. Journal of Heuristics 5, 403–418 (1999)CrossRefzbMATHGoogle Scholar
  27. 27.
    Yoke, M., Low, H., Xiao, X., Liu, F., Huang, S.Y., Hsu, W.J., Li, Z.: An automated stowage planning system for large containerships. In: Proceedings of the 4th Virtual Int. Conference on Intelligent Production Machines and Systems (2009)Google Scholar
  28. 28.
    Zhang, W.Y., Lin, Y., Ji, Z.S.: Model and algorithm for container ship stowage planning based on bin-packing problem. Journal of Marine Science and Application 4(3) (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Dario Pacino
    • 1
  • Alberto Delgado
    • 1
  • Rune Møller Jensen
    • 1
  • Tom Bebbington
    • 2
  1. 1.IT-University of CopenhagenDenmark
  2. 2.Global Stowage ProductionMaersk Line OperationsSingapore

Personalised recommendations