Shipper Decision Support for the Acceptance of Bids during the Procurement of Transport Services

  • Tobias Buer
  • Herbert Kopfer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6971)

Abstract

Combinatorial reverse auctions can be used by shippers in order to procure transportation services from carriers. After carriers have submitted their bids, a shipper has to decide about the allocation of transport services to carriers, i.e., a shipper has to solve the winner determination problem of the auction. This paper focuses on a bicriteria winner determination problem in which a shipper has to select a subset of the set of bids and simultaneously decide about the desired trade-off between total transportation costs and the quality of the entire transportation services. To solve this bicriteria optimization problem a metaheuristic is developed that computes a set of non-dominated solutions based on the concepts of multi-start, large neighborhood search and a bicriteria branch-and-bound procedure. Compared to previous results in the literature, the proposed algorithm is able to improve the set of non-dominated solutions for 14 out of 30 benchmark instances.

Keywords

Candidate List Transport Service Combinatorial Auction Improvement Phase Large Neighborhood Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buer, T., Pankratz, G.: Grasp with hybrid path relinking for bi-objective winner determination in combinatorial transportation auctions. Business Research 3(2), 192–213 (2010)CrossRefGoogle Scholar
  2. 2.
    Buer, T., Pankratz, G.: Solving a bi-objective winner determination problem in a transportation procurement auction. Logistics Research 2(2), 65–78 (2010)CrossRefGoogle Scholar
  3. 3.
    Caplice, C., Sheffi, Y.: Optimization-based procurement for transportation services. Journal of Business Logistics 24(2), 109–128 (2003)CrossRefGoogle Scholar
  4. 4.
    Caplice, C., Sheffi, Y.: Combinatorial auctions for truckload transportation. In: Cramton, P., Shoaham, Y., Steinberg, R. (eds.) Combinatorial Auctions, pp. 539–571. MIT Press, Cambridge (2006)Google Scholar
  5. 5.
    Catalán, J., Epstein, R., Guajardo, M., Yung, D., Martínez, C.: Solving multiple scenarios in a combinatorial auction. Computers & Operations Research 36(10), 2752–2758 (2009)CrossRefMATHGoogle Scholar
  6. 6.
    Chen, R.L.Y., AhmadBeygi, S., Cohn, A., Beil, D.R., Sinha, A.: Solving truckload procurement auctions over an exponential number of bundles. Transportation Science 43(4), 493–510 (2009)CrossRefGoogle Scholar
  7. 7.
    Chvátal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233–235 (1979)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Feo, T.A., Resende, M.G.: Greedy randomized adaptive search procedures. Journal of Global Optimization 6(2), 109–133 (1995)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Kopfer, H., Pankratz, G.: Das Groupage-Problem kooperierender Verkehrsträger. In: Kall, P., Lüthi, H.J. (eds.) Operations Research Proceedings 1998, pp. 453–462. Springer, Berlin (1999)CrossRefGoogle Scholar
  10. 10.
    Pankratz, G.: Analyse kombinatorischer Auktionen für ein Multi-Agentensystem zur Lösung des Groupage-Problems kooperierender Speditionen. In: Inderfurth, K., Schwödiauer, G., Domschke, W., Juhnke, F., Kleinschmidt, P., Wäscher, G. (eds.) Operations Research Proceedings 1999, pp. 443–448. Springer, Berlin (2000)CrossRefGoogle Scholar
  11. 11.
    Shaw, P.: Using constraint programming and local search methods to solve vehicle routing problems. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 417–431. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Sheffi, Y.: Combinatorial auctions in the procurement of transportation services. Interfaces 34(4), 245–252 (2004)CrossRefGoogle Scholar
  13. 13.
    Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactons on Evolutionary Computation 7, 117–132 (2003)CrossRefGoogle Scholar
  14. 14.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglou, K., Tsahalis, D., Periaux, J., Papailiou, K., Fogarty, T. (eds.) Proceedings of the EUROGEN 2001 Conference, pp. 95–100. International Center for Numerical Methods in Engineering (CIMNE), Barcelona (2002)Google Scholar
  15. 15.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tobias Buer
    • 1
  • Herbert Kopfer
    • 1
  1. 1.University of Bremen, Chair of LogisticsBremenGermany

Personalised recommendations