Strategic and Operational Planning of Bike-Sharing Systems by Data Mining – A Case Study

  • Patrick Vogel
  • Dirk C. Mattfeld
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6971)

Abstract

Bike-sharing is a new form of sustainable urban public mobility. A common issue observed in bike-sharing systems is imbalances in the distribution of bikes. There are two logistical measures alleviating imbalances: strategic network design and operational repositioning of bikes. IT-systems record data from Bike Sharing Systems (BSS) operation that are suitable for supporting these logistical tasks. A case study shows how Data Mining applied to operational data offers insight into typical usage patterns of bike-sharing systems and is used to forecast bike demand with the aim of supporting and improving strategic and operational planning.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Midgley, P.: The Role of Smart Bike-sharing Systems in Urban Mobility. Journeys, 23–31 (May 2009)Google Scholar
  2. 2.
    Hand, D.J., Mannila, H., Smyth, P.: Principles of Data Mining. MIT Press, Cambridge (2001)Google Scholar
  3. 3.
    Shaheen, S., Guzman, S., Zhang, H.: Bikesharing in Europe, the Americas, and Asia: Past, Present and Future. Paper presented at the 89th Annual Meeting of the Transportation Research Board (2010)Google Scholar
  4. 4.
    DeMaio, P.J.: Bike-sharing: History, Impacts, Models of Provision, and Future. Journal of Public Transportation 12(4), 41–56 (2009)MathSciNetGoogle Scholar
  5. 5.
    Zahory, M.N.: Request for Proposals for the operation of the Arlington Bike-sharing Program (2009)Google Scholar
  6. 6.
    Salhi, S., Rand, G.K.: The effect of ignoring routes when locating depots. European Journal of Operational Research 39(2), 150–156 (1989)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Froehlich, J., Neumann, J., Oliver, N. (eds.): Sensing and Predicting the Pulse of the City through Shared Bicycling (2008)Google Scholar
  8. 8.
    Kaltenbrunner, A., Meza, R., Grivolla, J., Codina, J., Banchs, R.: Urban cycles and mobility patterns: Exploring and predicting trends in a bicycle-based public transport system. Pervasive and Mobile Computing 6(4), 455–466 (2010)CrossRefGoogle Scholar
  9. 9.
    Borgnat, P., Robardet, C., Rouquier, J.-B., Abry, P., Flandrin, P., Fleury, E.: Shared Bicycles in a City: A Signal Processing and Data Analysis Perspective (2010)Google Scholar
  10. 10.
    Lin, J.-R., Yang, T.-H.: Strategic design of public bicycle sharing systems with service level constraints. Transportation Research Part E: Logistics and Transportation Review 47(2), 284–294 (2011)CrossRefGoogle Scholar
  11. 11.
    Meisel, S., Mattfeld, D.: Synergies of Operations Research and Data Mining. European Journal of Operational Research 206(1), 1–10 (2010)MATHCrossRefGoogle Scholar
  12. 12.
    Fayyad, U.M.: Advances in Knowledge Discovery and Data Mining. AAAI Press, MIT Press, Menlo Park, Calif (1996)Google Scholar
  13. 13.
    Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time series analysis. Forecasting and control, 4th edn. Wiley, Hoboken (2008)MATHGoogle Scholar
  14. 14.
    Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to data mining. Pearson international Edition. Pearson, Boston (2006)Google Scholar
  15. 15.
    Pinkofsky, L.: Typisierung von Ganglinien der Verkehrsstärke und ihre Eignung zur Modellierung der Verkehrsfrage. Shaker, Aachen (2005)Google Scholar
  16. 16.
    Snizek + Partner Verkehrsplanung: Radverkehrserhebung Wien (2009), http://www.snizek.at/radverkehr/berichte/1254_Radverkehrserhebungen-Bericht-August-2009.pdf, (June 30, 2011)
  17. 17.
    Girod, B.: Eigenschaften des Fahrradverkehrs. Analyse des Fahrradverkehrs aufgrund der Mikrozensus 2000 und Thurgau 2003 Verkehrsbefragungen. Institut für Verkehrsplanung und Transportsysteme, Eidgenössische Technische Hochschule Zürich, Zürich (2005)Google Scholar
  18. 18.
    Brandenburg, C., Matzarakis, A., Arnberger, A.: Weather and cycling—a first approach to the effects of weather conditions on cycling. Met. Apps 14(1), 61–67 (2007)CrossRefGoogle Scholar
  19. 19.
    Haustein, S., Hunecke, M., Manz, W.: Verkehrsmittelnutzung unter Einfluss von Wetterlage und -empfindlichkeit. Internationales Verkehrswesen 59(9), 392–396 (2007)Google Scholar
  20. 20.
    Nankervis, M.: The effect of weather and climate on bicycle commuting. Transportation Research Part A: Policy and Practice 33(6), 417–431 (1999)CrossRefGoogle Scholar
  21. 21.
    Backhaus, K.: Multivariate Analysemethoden. Eine anwendungsorientierte Einführung, mit …6 Tabellen, 11th edn. Springer, Berlin (2006)MATHGoogle Scholar
  22. 22.
    Schlittgen, R.: Angewandte Zeitreihenanalyse. Oldenbourg, München (2001)Google Scholar
  23. 23.
    Slonim, N., Friedman, N., Tishby, N.: Unsupervised document classification using sequential information maximization. In: Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 129–136. ACM Press, New York (2002)CrossRefGoogle Scholar
  24. 24.
    Berkin, P.: A Survey of Clustering Data Mining Techniques. In: Kogan, J., Nicholas, C., Teboulle, M. (eds.) Grouping Multidimensional Data. Recent Advances in Clustering, pp. 25–71. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Jain, A.K., Dubes, R.C.: Algorithms for clustering data. Prentice Hall Advanced Reference Series. Prentice-Hall, Englewood Cliffs (1988)Google Scholar
  26. 26.
    Abonyi, J., Feil, B.: Cluster Analysis for Data Mining and System Identification. Birkhäuser Verlag AG, Basel (2007)MATHGoogle Scholar
  27. 27.
    Vienna Statistical Yearbook (2009), http://www.wien.gv.at/statistik/pdf/bezirksportraets09.pdf, (April 4, 2011)

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Patrick Vogel
    • 1
  • Dirk C. Mattfeld
    • 1
  1. 1.Decision Support GroupUniversity of BraunschweigBraunschweigGermany

Personalised recommendations