Analysis of Nonparametric Estimation Methods for Mutual Information Analysis

  • Alexandre Venelli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6829)


Mutual Information Analysis (MIA) is a side-channel attack introduced recently. It uses mutual information, a known information theory notion, as a side-channel distinguisher. Most previous attacks use parametric statistical tests and the attacker assumes that the distribution family of the targeted side-channel leakage information is known. On the contrary, MIA is a generic attack that assumes the least possible about the underlying hardware specifications. For example, an attacker should not have to guess a linear power model and combine it with a parametric test, like the Pearson correlation factor. Mutual information is considered to be very powerful however it is difficult to estimate. Results of MIA can therefore be unreliable and even bias. Several efficient parametric estimators of mutual information are proposed in the literature. They are obviously very efficient when the distribution is correctly guessed. However, we loose the original goal of MIA which is to assume the least possible about the attacked devices. Hence, nonparametric estimators of mutual information should be considered in more details and, in particular, their efficiency in the side-channel context. We review some of the most powerful nonparametric methods and compare their performance with state-of-the-art side-channel distinguishers.


Side-channel analysis mutual information analysis entropy estimation nonparametric statistics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Batina, L., Gierlichs, B., Lemke-Rust, K.: Comparative Evaluation of Rank Correlation Based DPA on an AES Prototype Chip. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 341–354. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Batina, L., Gierlichs, B., Lemke-Rust, K.: Differential Cluster Analysis. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 112–127. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Chen, Z., Zhou, Y.: Dual-Rail Random Switching Logic: A Countermeasure to Reduce Side Channel Leakage. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 242–254. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Daub, C., Steuer, R., Selbig, J., Kloska, S.: Estimating Mutual Information Using B-spline Functions - an Improved Similarity Measure for Analysing Gene Expression Data. BMC Bioinformatics 5, 118 (2004)CrossRefGoogle Scholar
  7. 7.
    Flament, F., Guilley, S., Danger, J., Elaabid, M., Maghrebi, H., Sauvage, L.: About Probability Density Function Estimation for Side Channel Analysis. In: COSADE 2010 (2010)Google Scholar
  8. 8.
    Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Goodman, L., Kruskal, W.: Measures of Association for Cross Classifications. II: Further Discussion and References. Journal of the American Statistical Association 49, 732–764 (1954)MATHGoogle Scholar
  10. 10.
    Guilley, S., Hoogvorst, P., Mathieu, Y., Pacalet, R.: The “Backend Duplication” Method. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 383–397. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Kendall, M.: A New Measure of Rank Correlation. Biometrika 30, 1–2 (1938)CrossRefMATHGoogle Scholar
  12. 12.
    Kocher, P.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  13. 13.
    Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Kraskov, A., Stogbauer, H., Grassberger, P.: Estimating Mutual Information. Physical Review E 69, 66138 (2004)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kullback, S., Leibler, R.: On Information and Sufficiency. The Annals of Matematical Statistics 22, 79–86 (1951)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Lee, T.H., Berthier, M.: Mutual Information Analysis under the View of Higher-Order Statistics. In: Echizen, I., Kunihiro, N., Sasaki, R. (eds.) IWSEC 2010. LNCS, vol. 6434, pp. 285–300. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Investigations of Power Analysis Attacks on Smartcards. In: USENIX Workshop on Smartcard Technology. pp. 151–162 (1999)Google Scholar
  18. 18.
    Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Power Analysis Attacks of Modular Exponentiation in Smartcards. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 144–157. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  19. 19.
    Moon, Y.I., Rajagopalan, B., Lall, U.: Estimation of Mutual Information using Kernel Density Estimators. Physical Review E 52(3), 2318–2321 (1995)CrossRefGoogle Scholar
  20. 20.
    Moradi, A., Mousavi, N., Paar, C., Salmasizadeh, M.: A Comparative Study of Mutual Information Analysis under a Gaussian Assumption. In: Youm, H.Y., Yung, M. (eds.) WISA 2009. LNCS, vol. 5932, pp. 193–205. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Papana, A., Kugiumtzis, D.: Evaluation of Mutual Information Estimators on Nonlinear Dynamic Systems. Nonlinear Phenomena in Complex Systems 11, 225–232 (2008)MATHGoogle Scholar
  22. 22.
    Pompe, B., Heilfort, M.: On the Concept of the Generalized Mutual Information Function and Efficient Algorithms for Calculing it (1995)Google Scholar
  23. 23.
    Pompe, B., Physik, F.: Measuring Statistical Dependences in a Time Series. Journal of Statistical Physics 73, 587–610 (1993)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Prouff, E., Rivain, M.: Theoretical and Practical Aspects of Mutual Information Based Side Channel Analysis. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 499–518. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Rényi, A.: On Measures of Information and Entropy. In: Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability, vol. 1, pp. 547–561 (1961)Google Scholar
  26. 26.
    Shannon, C.: A Mathematical Theory of Communication. The Bell System Technical Journal 27, 379–423 (1948)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Standaert, F.X., Gierlichs, B., Verbauwhede, I.: Partition vs. Comparison Side-Channel Distinguishers: An Empirical Evaluation of Statistical Tests for Univariate Side-Channel Attacks against Two Unprotected CMOS Devices. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 253–267. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  28. 28.
    Venelli, A.: Efficient Entropy Estimation for Mutual Information Analysis Using B-Splines. In: Samarati, P., Tunstall, M., Posegga, J., Markantonakis, K., Sauveron, D. (eds.) WISTP 2010. LNCS, vol. 6033, pp. 17–30. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  29. 29.
    Veyrat-Charvillon, N., Standaert, F.: Mutual Information Analysis: How, When and Why? In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 429–443. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  30. 30.
    VLSI research group and TELECOM ParisTech: The DPA Contest (2008/2009),

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alexandre Venelli
    • 1
    • 2
  1. 1.IML - ERISCS Université de la MéditerranéeMarseille Cedex 09France
  2. 2.Vault-IC France, an INSIDE Contactless CompanyRoussetFrance

Personalised recommendations