Datalog Programs and Their Stable Models

  • Vladimir Lifschitz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6702)


This paper is about the functionality of software systems used in answer set programming (ASP). ASP languages are viewed here, in the spirit of Datalog, as mechanisms for characterizing intensional (output) predicates in terms of extensional (input) predicates. Our approach to the semantics of ASP programs is based on the concept of a stable model defined in terms of a modification of parallel circumscription.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)CrossRefzbMATHGoogle Scholar
  2. 2.
    Brewka, G., Niemelä, I., Truszczyński, M.: Nonmonotonic reasoning. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation. Elsevier, Amsterdam (2008)Google Scholar
  3. 3.
    Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artificial Intelligence 175, 236–263 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ferraris, P., Lifschitz, V.: The stable model semantics for first-order formulas with aggregates10. In: Proceedings of International Workshop on Nonmonotonic Reasoning, NMR (2010)Google Scholar
  5. 5.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K. (eds.) Proceedings of International Logic Programming Conference and Symposium, pp. 1070–1080. MIT Press, Cambridge (1988)Google Scholar
  6. 6.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9, 365–385 (1991)CrossRefzbMATHGoogle Scholar
  7. 7.
    Lifschitz, V.: What is answer set programming? In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 1594–1597. MIT Press, Cambridge (2008)Google Scholar
  8. 8.
    Lifschitz, V., Morgenstern, L., Plaisted, D.: Knowledge representation and classical logic. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation, pp. 3–88. Elsevier, Amsterdam (2008)CrossRefGoogle Scholar
  9. 9.
    Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transactions on Computational Logic 2, 526–541 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lifschitz, V., Pearce, D., Valverde, A.: A characterization of strong equivalence for logic programs with variables. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 188–200. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm. In: The Logic Programming Paradigm: a 25-Year Perspective, pp. 375–398. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    McCarthy, J.: Applications of circumscription to formalizing common sense knowledge. Artificial Intelligence 26(3), 89–116 (1986)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Moschovakis, J.: Intuitionistic logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Fall 2008 edn. (2008), archives/fall2008/entries/logic-intuitionisticGoogle Scholar
  14. 14.
    Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. Annals of Mathematics and Artificial Intelligence 25, 241–273 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Pearce, D.: A new logical characterization of stable models and answer sets. In: Dix, J., Przymusinski, T.C., Moniz Pereira, L. (eds.) NMELP 1996. LNCS, vol. 1216, pp. 57–70. Springer, Heidelberg (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Vladimir Lifschitz
    • 1
  1. 1.Department of Computer ScienceUniversity of Texas at AustinUSA

Personalised recommendations