Spin Effects in Exciton–Polariton Condensates

Chapter
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 172)

Abstract

Exciton–polaritons in microcavities form an unusual gas of weakly interacting bosons. It has no direct analogy in cold atomic gases, superfluids or superconductors due to its two-component spin structure: in typical planar microcavities the polaritons have two allowed spin projections to the structure axis. This is why the order parameter of a polariton condensate is a complex spinor. The magnitude and, possibly, sign of polariton–polariton interaction constant depends on the spin state of polaritons. The energy of an exciton–polariton condensate is also spin-dependent. These specific features make polariton condensates a unique laboratory for studies of spin effects in interacting Bose gases. Several new spin-dependent effects in polariton condensates have been theoretically predicted and experimentally observed during the recent decade. This review chapter addresses some of these effects: polarisation multistability, spin switching, spin rings and spin Meissner effect. In the last section we address the perspective of observation of spin superfluidity in microcavities.

Keywords

Spin Current Will Emit Trigger Pulse Spin Switching Polariton Branch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work has been supported by the EU ITN project “CLERMONT4” and the IRSES project “POLAPHEN”. The author is deeply grateful to Yura Rubo, Tim Liew, Ivan Shelykh, Kirill Kavokin, Masha Vladimirova, Alberto Bramati, Alberto Amo, Daniele Sanvitto, Nikolay Gippius, Dima Krizhanovskii, Maurice Skolnick, Mike Kaliteevski, Konstantinos and Pavlos Lagoudakis, Luis Vina, Jeremy Baumberg and Jacqueline Bloch for many years of fruitful collaboration in the area of spin-related effects in microcavities.

References

  1. 1.
    C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa, Phys. Rev. Lett. 69, 3314 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    R. Houdré, C. Weisbuch, R.P. Stanley, U. Oesterle, P. Pellandini, M. Ilegems, Phys. Rev. Lett. 73, 2043 (1994)ADSCrossRefGoogle Scholar
  3. 3.
    V. Savona, L.C. Andreani, P. Schwendimann, A. Quattropani, Solid State Commun. 93, 733 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    A.V. Kavokin, M. Kaliteevski, Solid State Commun. 95, 859 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    A. Imamoglu, J.R. Ram, Phys. Lett. A 214, 193 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    A. Imamoglu, J.R. Ram, S. Pau, Y. Yamamoto, Phys. Rev. A 53, 4250 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    L.S. Dang, D. Heger, R. Andre, F. Boeuf, R. Romestain, Phys. Rev. Lett. 81, 3920 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    P.G. Savvidis, J.J. Baumberg, R.M. Stevenson, M.S. Skolnick, D.M. Whittaker, J.S. Roberts, Phys. Rev. Lett. 84, 1547 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    J. Kasprzak et al., Nature 443, 409 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    R. Balili et al., Science 316, 1007 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    C.W. Lai et al., Nature 450, 529 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    S. Christopoulos et al., Phys. Rev. Lett. 98, 126405 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    G. Panzarini et al., Phys. Rev. B 59, 5082 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    P.G. Lagoudakis, P.G. Savvidis, J.J. Baumberg, D.M. Whittaker, P.R. Eastham, M.S. Skolnick, J.S. Roberts, Phys. Rev. B: Condens Matter Mater. Phys. 65, 161310 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    M.D. Martín, G. Aichmayr, L. Viña, R. André, Phys. Rev. Lett. 89, 077402 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    T.K. Paraïso, M. Wouters, Y. Léger, F. Morier-Genoud, B. Deveaud-Plédran, Nat. Mater. 9, 655 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    A. Amo, T.C.H. Liew, C. Adrados, R. Houdré, E. Giacobino, A.V. Kavokin, A. Bramati, Nat. Photon. 4, 361 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Y.G. Rubo, A.V. Kavokin, I.A. Shelykh, Phys. Lett. A 358, 227 (2006)ADSMATHCrossRefGoogle Scholar
  19. 19.
    A.V. Larionov, V.D. Kulakovskii, S. Hofling, C. Schneider, L. Worschech, A. Forchel, Phys. Rev. Lett. 105, 256401 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    N.A. Gippius, I.A. Shelykh, D.D. Solnyshkov, S.S. Gavrilov, Y.G. Rubo, A.V. Kavokin, S.G. Tikhodeev, G. Malpuech, Phys. Rev. Lett. 98, 236401 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    I.A. Shelykh, T.C.H. Liew, A.V. Kavokin, Phys. Rev. Lett. 100, 116401 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    D. Sarkar, S.S. Gavrilov, M. Sich, J.H. Quilter, R.A. Bradley, N.A. Gippius, K. Guda V.D. Kulakovskii, M.S. Skolnick, D.N. Krizhanovskii, Phys. Rev. Lett. 105, 216402 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    C. Adrados, A. Amo, T.C.H. Liew, R. Hivet, R. Houdré, E. Giacobino, A.V. Kavokin, A. Bramati, Phys. Rev. Lett. 105, 216403 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    T.C.H. Liew, A.V. Kavokin, I.A. Shelykh, Phys. Rev. Lett. 101, 016402 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    R. Cerna, T.K. Paraiso, Y. Leger, M. Wouters, F. Morier-Genoud, M.T. Portella-Oberli, B. Deveaud-Pledran, privat communication.Google Scholar
  26. 26.
    M. Vladimirova, S. Cronenberger, D. Scalbert, K.V. Kavokin, A. Miard, A. Lemaitre, J. Bloch, D. Solnyshkov, G. Malpuech, A.V. Kavokin, Phys. Rev. B 82, 075301 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    T. Freixanet, B. Sermage, A. Tiberj, R. Planel, Phys. Rev. B 61, 7233 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    A. Kavokin, M. Glazov, G. Malpuech, Phys. Rev. Lett. 95, 136601 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    C. Leyder et al., Nat. Phys.3, 628 (2007)Google Scholar
  30. 30.
    M.M. Glazov, L.E. Golub, Phys. Rev. B 77, 165341 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    I.A. Shelykh et al., Phys. Rev. Lett. 102, 046407 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    K. Lagoudakis, T. Ostatnicky, A.V. Kavokin, Y.G. Rubo, R. Andre, B. Deveaud-Pledran, Science 326, 974 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    K.G. Lagoudakis, B. Pietka, M. Wouters, R. André, B. Deveaud-Plédran, Phys. Rev. Lett. 105, 120403 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    A. Amo et al., Nature 457, 291 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    A. Amo et al., Nat. Phys. 5, 805 (2009)CrossRefGoogle Scholar
  36. 36.
    E. Wertz et al., Nat. Phys. 6, 860 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Laboratoire Charles Coulomb, CC074Universite de Montpellier IIMontpellier, CedexFrance
  2. 2.Physics and Astronomy SchoolUniversity of SouthamptonSouthamptonUK

Personalised recommendations