Asymptotically False-Positive-Maximizing Attack on Non-binary Tardos Codes

  • Antonino Simone
  • Boris Škorić
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6958)

Abstract

We use a method recently introduced by us to study accusation probabilities for non-binary Tardos fingerprinting codes. We generalize the pre-computation steps in this approach to include a broad class of collusion attack strategies. We analytically derive properties of a special attack that asymptotically maximizes false accusation probabilities. We present numerical results on sufficient code lengths for this attack, and explain the abrupt transitions that occur in these results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amiri, E., Tardos, G.: High rate fingerprinting codes and the fingerprinting capacity. In: SODA 2009, pp. 336–345 (2009)Google Scholar
  2. 2.
    Blayer, O., Tassa, T.: Improved versions of Tardos’ fingerprinting scheme. Designs, Codes and Cryptography 48(1), 79–103 (2008)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data. IEEE Transactions on Information Theory 44(5), 1897–1905 (1998)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Furon, T., Guyader, A., Cérou, F.: On the design and optimization of tardos probabilistic fingerprinting codes. In: Solanki, K., Sullivan, K., Madhow, U. (eds.) IH 2008. LNCS, vol. 5284, pp. 341–356. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    He, S., Wu, M.: Joint coding and embedding techniques for multimedia fingerprinting. TIFS 1, 231–248 (2006)Google Scholar
  6. 6.
    Huang, Y.W., Moulin, P.: Saddle-point solution of the fingerprinting capacity game under the marking assumption. In: ISIT 2009 (2009)Google Scholar
  7. 7.
    Moulin, P.: Universal fingerprinting: Capacity and random-coding exponents. Preprint arXiv:0801.3837v2 (2008)Google Scholar
  8. 8.
    Nuida, K., Hagiwara, M., Watanabe, H., Imai, H.: Optimal probabilistic fingerprinting codes using optimal finite random variables related to numerical quadrature. CoRR, abs/cs/0610036 (2006)Google Scholar
  9. 9.
    Schaathun, H.G.: On error-correcting fingerprinting codes for use with watermarking. Multimedia Systems 13(5-6), 331–344 (2008)CrossRefGoogle Scholar
  10. 10.
    Simone, A., Škorić, B.: Accusation probabilities in Tardos codes. In: Benelux Workshop on Information and System Security, WISSEC 2010 (2010), http://eprint.iacr.org/2010/472
  11. 11.
    Somekh-Baruch, A., Merhav, N.: On the capacity game of private fingerprinting systems under collusion attacks. IEEE Trans. Inform. Theory 51, 884–899 (2005)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Tardos, G.: Optimal probabilistic fingerprint codes. In: STOC 2003, pp. 116–125 (2003)Google Scholar
  13. 13.
    Škorić, B., Katzenbeisser, S., Celik, M.U.: Symmetric Tardos fingerprinting codes for arbitrary alphabet sizes. Designs, Codes and Cryptography 46(2), 137–166 (2008)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Škorić, B., Katzenbeisser, S., Schaathun, H.G., Celik, M.U.: Tardos fingerprinting codes in the combined digit model. In: IEEE Workshop on Information Forensics and Security (WIFS) 2009, pp. 41–45 (2009)Google Scholar
  15. 15.
    Škorić, B., Vladimirova, T.U., Celik, M.U., Talstra, J.C.: Tardos fingerprinting is better than we thought. IEEE Trans. on Inf. Theory 54(8), 3663–3676 (2008)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Xie, F., Furon, T., Fontaine, C.: On-off keying modulation and Tardos fingerprinting. In: MM&Sec 2008, pp. 101–106 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Antonino Simone
    • 1
  • Boris Škorić
    • 1
  1. 1.Eindhoven University of TechnologyThe Netherlands

Personalised recommendations