Convex-Based Thermal Management for 3D MPSoCs Using DVFS and Variable-Flow Liquid Cooling

  • Francesco Zanini
  • David Atienza
  • Giovanni De Micheli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6951)


In this work, we propose a novel online thermal management approach based on model predictive control for 3D multi-processors system on chip (MPSoCs) using microfluidic cooling. The controller uses dynamic voltage and frequency scaling (DVFS) for the computational cores and adjusts the liquid flow rate to meet the desired performance requirements and to minimize the overall MPSoC energy consumption (MPSoC power consumption+cooling power consumption). Our experimental results illustrate that our policy satisfies performance requirements and maintains the temperature below the specified threshold, while reducing cooling energy by up to 50% compared with traditional state-of-the-art liquid cooling techniques. The proposed policy also keeps the thermal profile up to 18°C lower compared with state of the art 3D thermal management using variable-flow liquid cooling.


Load Balance Model Predictive Control Silicon Layer Thermal Management Liquid Cool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coskun, A.K., et al.: Energy-Efficient Variable-Flow Liquid Cooling in 3D Stacked Architectures. In: DATE 2010 (2010)Google Scholar
  2. 2.
    Coskun, A.K., et al.: Modeling and dynamic management of 3D multicore systems with liquid cooling. In: VLSI-SoC (2009)Google Scholar
  3. 3.
    Brunschwiler, T., et al.: Interlayer cooling potential in vertically integrated packages. Microsyst. Technol. (2008)Google Scholar
  4. 4.
    Kongetira, P., et al.: Niagara: A 32-way multithreaded SPARC processor. IEEE Micro (2005)Google Scholar
  5. 5.
    Skadron, K., et al.: Temperature-aware microarchitecture: Modeling and impl. In: TACO (2004)Google Scholar
  6. 6.
    Coskun, A.K., et al.: Modeling and dynamic management of 3D multicore systems with liquid cooling. In: VLSISOC (2009)Google Scholar
  7. 7.
    Sridhar, A., et al.: 3D-ICE: Fast compact transient thermal modeling for 3D-ICs with inter-tier liquid cooling. In: ICCAD (2010)Google Scholar
  8. 8.
    Mukherjee, R., et al.: Physical aware frequency selection for dynamic thermal management in multi-core systems. In: ICCAD (2006)Google Scholar
  9. 9.
    Bemporad, A., et al.: The explicit linear quadratic regulator for constrained systems. Automatica (2002)Google Scholar
  10. 10.
    Zanini, F., et al.: Multicore Thermal Management with Model Predictive Control. In: ECCTD (2009)Google Scholar
  11. 11.
    Donald, J., et al.: Techniques for multi-core thermal management: Classif. and new exploration. In: ISCA (2006)Google Scholar
  12. 12.
    Coskun, A.K., et al.: Proactive temperature balancing for low cost thermal management in MPSoCs. In: ICCAD (2008)Google Scholar
  13. 13.
    Coskun, A.K., et al.: Temperature management in multiprocessor SoCs using online learning. In: DAC (2008)Google Scholar
  14. 14.
    Grant, M., et al.: CVX: Matlab software for disciplined convex programming,
  15. 15.
    Zanini, F., et al.: Online Convex Optimization-Based Algorithm For Thermal Management of MPSoCs. In: GLSVLSI (2010)Google Scholar
  16. 16.
    Sabry, M.M., et al.: Fuzzy Control for Enforcing Energy Efficiency in High-Performance 3D Systems. In: ICCAD (2010)Google Scholar
  17. 17.
    Ruggiero, M., et al.: MPARM: Exploring the Multi-Processor SoC Design Space with SystemC. The Journal of VLSI Signal Processing (2005)Google Scholar
  18. 18.
    Magno, M., et al.: Adaptive power control for solar harvesting multimodal wireless smart camera. In: ICDSC (2009)Google Scholar
  19. 19.
    Bose, P.: Power-efficient microarchitectural choices at the early design stage. In: Keynote Address on PACS (2003)Google Scholar
  20. 20.
    Boyd, S., et al.: Convex Optimization. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Francesco Zanini
    • 1
  • David Atienza
    • 2
  • Giovanni De Micheli
    • 1
  1. 1.Integrated Systems Laboratory (LSI)EPFLLausanneSwitzerland
  2. 2.Embedded Systems Laboratory (ESL)EPFLLausanneSwitzerland

Personalised recommendations