An On-Chip All-Digital PV-Monitoring Architecture for Digital IPs

  • Hossein Karimiyan
  • Andrea Calimera
  • Alberto Macii
  • Enrico Macii
  • Massimo Poncino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6951)


This paper presents an on-chip all-digital sensor architecture to capture process variation information. The proposed solution is based on the concept of variation amplification and uses the propagation delay measurement in a chain composed of series connected pass-transistors. The proposed sensor circuit is able to capture the local variation of nMOS and pMOS transistor individually. A sensor block is proposed, which contains N-type and P-type sensor circuit along with scan, control, and measurement circuitry. An array of sensor blocks with scan chain connection gathers process variation information all across the die. Detailed SPICE level simulations conducted for an industrial 45nm CMOS technology indicates its feasibility in sensing, and on-chip all-digital measurement of process variation effect.


Process variation sensor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sylvester, D., Agarwal, K., Shah, S.: Variability in nanometer CMOS: Impact, analysis, and minimization. The VLSI Journal Integration 41(3), 319–339 (2008)CrossRefGoogle Scholar
  2. 2.
    Meijer, M., Liu, B., van Veen, R., Pinade de Gyvez, J.: Post-silicon tuning capabilities of 45nm low-power CMOS digital circuits. In: 2009 Symposium on VLSI Circuits, pp. 110–111 (2009)Google Scholar
  3. 3.
    Bhushan, M., Gattiker, A., Ketchen, M.B., Das, K.K.: Ring oscillators for CMOS process tuning and variability control. IEEE Trans. on Semiconductor Manufacturing 19(1), 10–18 (2006)CrossRefGoogle Scholar
  4. 4.
    Kim, C.H., Hsu, S., Krishnamurthy, R., Borkar, S., Roy, K.: Self calibrating circuit design for variation tolerant VLSI systems. In: 11th IEEE International On-Line Testing Symposium, IOLTS 2005, pp. 100–105 (2005)Google Scholar
  5. 5.
    Nourani, M., Radhakrishnan, A.: Testing On-Die Process Variation in Nanometer VLSI. IEEE Design & Test of Computers 23(6), 438–451 (2006)CrossRefGoogle Scholar
  6. 6.
    Johguchi, K., Kaya, A., Mattausch, H.J., Koide, T., Izumi, S., Sadachika, N.: Measurement-Based Ring Oscillator Variation Analysis. IEEE Design & Test of Computers 27(5), 6–13 (2010)CrossRefGoogle Scholar
  7. 7.
    Agarwal, K., Hayes, J., Nassif, S.: Fast Characterization of Threshold Voltage Fluctuation in MOS Devices. IEEE Transactions on Semiconductor Manufacturing 21(4), 526–533 (2008)CrossRefGoogle Scholar
  8. 8.
    Agarwal, K., Liu, F., McDowell, C., Nassif, S., Nowka, K., Palmer, M., Acharyya, D., Plusquellic, J.: A Test Structure for Characterizing Local Device Mismatches. In: 2006 Symposium on VLSI Circuits, pp. 67–68. Digest of Technical Papers (2006)Google Scholar
  9. 9.
    Drego, N., Chandrakasan, A., Boning, D.: All-Digital Circuits for Measurement of Spatial Variation in Digital Circuits. IEEE Journal of Solid-State Circuits 45(3), 640–651 (2010)CrossRefGoogle Scholar
  10. 10.
    Rao, R., Jenkins, K.A., Kim, J.-J.: A Local Random Variability Detector with Complete Digital On-Chip Measurement Circuitry. IEEE Journal of Solid-State Circuits 44(9), 2616–2623 (2009)CrossRefGoogle Scholar
  11. 11.
    Liang, X., Wei, G.-Y., Brooks, D.: Revival: A Variation-Tolerant Architecture Using Voltage Interpolation and Variable Latency. IEEE Micro 29(1), 127–138 (2009)CrossRefGoogle Scholar
  12. 12.
    Agarwal, K.: On-die sensors for measuring process and environmental variations in integrated circuits. In: Proc. of the 20th Great Lakes Symposium on VLSI 2010, pp. 147–150 (2010)Google Scholar
  13. 13.
    Keshavarzi, A., Schrom, G., Tang, S., Ma, S., Bowman, K., Tyagi, S., Zhang, K., Linton, T., Hakim, N., Duvall, S., Brews, J., De, V.: Measurements and modeling of intrinsic fluctuations in MOSFET threshold voltage. In: Proc. of the 2005 International Symposium on Low Power Electronics and Design (ISLPED 2005), pp. 26–29 (2005)Google Scholar
  14. 14.
    Restle, P.J., Franch, R.L., James, N.K., Huott, W.V., Skergan, T.M., Wilson, S.C., Schwartz, N.S., Clabes, J.G.: Timing uncertainty measurements on the Power5 microprocessor. In: IEEE International Solid-State Circuits Conference, vol. 1, pp. 354–355. Digest of Technical Papers (2004)Google Scholar
  15. 15.
    Weste, N., Harris, D.: CMOS VLSI Design: A Circuits and Systems Perspective, 4th edn. Addison Wesley, Reading (2010)Google Scholar
  16. 16.
    Dadgour, H.F., Banerjee, K.: A Novel Variation-Tolerant Keeper Architecture for High-Performance Low-Power Wide Fan-In Dynamic or Gates. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 18(11), 1567–1577 (2010)CrossRefGoogle Scholar
  17. 17.
    Henzler, S.: Time-to-digital converters, 1st edn. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Zhao, W., Liu, F., Agarwal, K., Acharyya, D., Nassif, S.R., Nowka, K., Cao, Y.: Rigorous extraction of process variations for 65nm CMOS design. IEEE Transactions on Semiconductor Manufacturing 22(1), 196–203 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hossein Karimiyan
    • 1
  • Andrea Calimera
    • 1
  • Alberto Macii
    • 1
  • Enrico Macii
    • 1
  • Massimo Poncino
    • 1
  1. 1.Dipartimento di Automatica e InformaticaPolitecnico di TorinoTorinoItaly

Personalised recommendations