Agent-Based Thermal Management Using Real-Time I/O Communication Relocation for 3D Many-Cores

  • Thomas Ebi
  • Holm Rauchfuss
  • Andreas Herkersdorf
  • Jörg Henkel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6951)


A major concern of current and future on-chip systems is the thermal problem i.e. electrical energy is dissipated leading to high chip temperatures. Short term effects may include transient malfunctioning whereas long-term effects may lead to deteriorating functionality (e.g. increased signal travel times) or to irreversible damage due to, for example, electro-migration. The problem worsens with the inception of 3D architectures as the per-surface dissipated electrical energy is larger, e.g. our evaluation shows an increase of 37.5% in peak temperature in an architecture with 2 layers compared to a single layer architecture. Our proposed concept addresses thermal problems in 3D-stacked many-core architectures resulting from high power densities. A hierarchical agent-based thermal management system initiates a proactive task migration onto cooler processing resources while a communication virtualization layer dynamically adapts and protects connectivity between (migrated) tasks and external I/Os.


Dynamic thermal management Communication virtualization 3D-architectures Many-core systems MPSoC 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Austin, T., Bertacco, V., Mahlke, S., Cao, Y.: Reliable systems on unreliable fabrics. IEEE Design & Test 25(4), 322–332 (2008)CrossRefGoogle Scholar
  2. 2.
    Banerjee, K., Mehrotra, A., Sangiovanni-Vincentelli, A., Hu, C.: On thermal effects in deep sub-micron vlsi interconnects. In: Proceedings of the 36th Annual Design Automation Conference DAC 1999, New Orleans, Louisiana, United States, pp. 885–891. ACM, New York (1999)Google Scholar
  3. 3.
    Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: Proceedings of the 19th ACM Symposium on Operating Systems Principles SOSP 2003, pp. 164–177. ACM, New York (2003)Google Scholar
  4. 4.
    Black, B., Annavaram, M., Brekelbaum, N., DeVale, J., Jiang, L., Loh, G.H., McCaule, D., Morrow, P., Nelson, D.W., Pantuso, D., Reed, P., Rupley, J., Shankar, S., Shen, J., Webb, C.: Die stacking (3d) microarchitecture. In: MICRO 39: Proceedings of the 39th Annual IEEE/ACM International Symposium on Microarchitecture, pp. 469–479. IEEE Computer Society, Washington, DC, USA (2006)Google Scholar
  5. 5.
    Borkar, S., Jouppi, N.P., Stenstrom, P.: Microprocessors in the era of terascale integration. In: Proceedings of the Conference on Design, Automation and Test in Europe DATE 2007, pp. 237–242. EDA Consortium, San Jose (2007)Google Scholar
  6. 6.
    Brooks, D., Martonosi, M.: Dynamic Thermal Management for High-Performance Microprocessors. In: Proceedings of the 7th International Symposium on High-Performance Computer Architecture, p. 0171 (2001)Google Scholar
  7. 7.
    Cochran, R., Nowroz, A.N., Reda, S.: Post-silicon power characterization using thermal infrared emissions. In: International Symposium on Low-Power Electronics and Design, pp. 331–336 (2010)Google Scholar
  8. 8.
    Cong, J., Zhang, Y.: Thermal-driven multilevel routing for 3-d ics. In: Proceedings of the Asia and South Pacific Design Automation Conference ASP-DAC 2005, pp. 121–126. ACM, New York (2005)Google Scholar
  9. 9.
    Coskun, A.K., Ayala, J.L., Atienza, D., Rosing, T.S., Leblebici, Y.: Dynamic thermal management in 3d multicore architectures. In: Design, Automation and Test in Europe DATE 2009, pp. 1410–1415 (April 2009)Google Scholar
  10. 10.
    Al Faruque, M.A., Jahn, J., Ebi, T., Henkel, J.: Runtime thermal management using software agents for multi/many-core architectures. IEEE Design & Test 27(6), 58–68 (2010)CrossRefGoogle Scholar
  11. 11.
    Al Faruque, M.A., Ebi, T., Henkel, J.: ROAdNoC: Runtime observability for an adaptive network on chip architecture. In: IEEE/ACM International Conference on Computer-Aided Design ICCAD 2008, pp. 543–548 (2008)Google Scholar
  12. 12.
    Feero, B., Pande, P.P.: Performance evaluation for three-dimensional networks-on-chip. In: IEEE Computer Society Annual Symposium on VLSI ISVLSI 2007, pp. 305–310 (March 2007)Google Scholar
  13. 13.
    Haensch, W.: Why should we do 3d integration? In: Proceedings of the 45th Annual Design Automation Conference DAC 2008, pp. 674–675. ACM, New York (2008)CrossRefGoogle Scholar
  14. 14.
    Huang, W., Stan, M.R., Skadron, K., Sankaranarayanan, K., Ghosh, S., Velusam, S.: Compact thermal modeling for temperature-aware design. In: DAC 2004, pp. 878–883 (2004)Google Scholar
  15. 15.
    Jahn, J., Al Faruque, M.A., Henkel, J.: Carat: Context-aware runtime adaptive task migration for multi core architectures. In: Design, Automation and Test in Europe, DATE 2011, pp. 1–6 (March 2011)Google Scholar
  16. 16.
    Ram, K.K., Santos, J.R., Turner, Y., Cox, A.L., Rixner, S.: Achieving 10 Gb/s using safe and transparent network interface virtualization. In: Proceedings of the International Conference on Virtual Execution Environments, pp. 61–70. ACM, New York (2009)Google Scholar
  17. 17.
    Rabaey, J.M., Malik, S.: Challenges and solutions for late- and post-silicon design. IEEE Design & Test 25(4), 296–302 (2008)CrossRefGoogle Scholar
  18. 18.
    Rauchfuss, H., Wild, T., Herkersdorf, A.: A network interface card architecture for i/o virtualization in embedded systems. In: Workshop on I/O Virtualization (2010)Google Scholar
  19. 19.
    Santos, J.R., Turner, Y., Mudigonda, J.: Taming heterogeneous nic capabilities for i/o virtualization. In: Workshop on I/O Virtualization (2008)Google Scholar
  20. 20.
    von Neumann, J.: Probabilistic logics and synthesis of reliable organisms from unreliable components. In: Automata Studies, pp. 43–98. Princeton University Press, Princeton (1956)Google Scholar
  21. 21.
    Willmann, P., Shafer, J., Carr, D., Menon, A., Rixner, S., Cox, A.L., Zwaenepoel, W.: Concurrent direct network access for virtual machine monitors. In: Proceedings of the 13th International Symposium on High Performance Computer Architecture, pp. 306–317. Citeseer (2007)Google Scholar
  22. 22.
    Zhou, X., Xu, Y., Du, Y., Zhang, Y., Yang, J.: Thermal management for 3d processors via task scheduling. In: 37th International Conference on Parallel Processing ICPP 2008, pp. 115–122 (September 2008)Google Scholar
  23. 23.
    Zhu, C., Gu, Z., Shang, L., Dick, R.P., Joseph, R.: Three-dimensional chip-multiprocessor run-time thermal management. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 27(8), 1479–1492 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Thomas Ebi
    • 1
  • Holm Rauchfuss
    • 2
  • Andreas Herkersdorf
    • 2
  • Jörg Henkel
    • 1
  1. 1.Karlsruhe Institute of TechnologyUSA
  2. 2.Technische Universität MünchenGermany

Personalised recommendations