A Parallel Analysis on Scale Invariant Feature Transform (SIFT) Algorithm

  • Donglei Yang
  • Lili Liu
  • Feiwen Zhu
  • Weihua Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6965)

Abstract

With explosive growth of multimedia data on internet, the effective information retrieval from a large scale of multimedia data becomes more and more important. To retrieve these multimedia data automatically, some features in them must be extracted. Hence, image feature extraction algorithms have been a fundamental component of multimedia retrieval. Among these algorithms, Scale Invariant Feature Transform (SIFT) has been proven to be one of the most robust image feature extraction algorithm. However, SIFT algorithm is not only data intensive but also computation intensive. It takes about four seconds to process an image or a video frame on a general-purpose CPU, which is far from real-time processing requirement. Therefore, accelerating SIFT algorithm is urgently needed. As multi-core CPU becomes more and more popular in recent years, it is natural to employ computing power of multi-core CPU to accelerate SIFT. How to parallelize SIFT to take full use of multi-core capabilities becomes one of the core issues. This paper analyzes available parallelism in SIFT and implements various parallel SIFT algorithms to evaluate which is the most suitable for multi-core system. The final result shows that our parallel SIFT achieves a speedup of 10.46X on 16-core machine.

Keywords

Feature Point Parallel Performance Scale Invariant Feature Transform Multimedia Data Parallel Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bohn, R., Short, J.: How much information? 2009, report on american consumers, San Diego, CA (December 2009)Google Scholar
  2. 2.
    Marques, G.B.B.O., Mayron, L.M., Gamba, H.R.: An attention-driven model for grouping similar images with image retrieval applications. EURASIP J. of Applied Signal Processing 2007(1), 116 (2007)CrossRefMATHGoogle Scholar
  3. 3.
    Smeulders, A.W.M., Member, S., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 1349–1380 (2000)CrossRefGoogle Scholar
  4. 4.
    Lowe, D.G.: Object recognition from local scaleinvariant features. In: Computer Vision, vol. 2, pp. 1150–1157 (1999)Google Scholar
  5. 5.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 404–417 (2004)CrossRefGoogle Scholar
  6. 6.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on PAMI 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  7. 7.
    Mikolajczyk, K.: Local feature evaluation dataset, http://www.robots.ox.ac.uk/~vgg/research/affine/
  8. 8.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Tang, F., Gao, Y.: Fast near duplicate detection for personal image collections. ACM Multimedia, 701–704 (2009)Google Scholar
  10. 10.
    Wu, X., Ngo, C.-W., Li, J., Zhang, Y.: Localizing volumetric motion for action recognition in realistic videos. ACM Multimedia, 505–508 (2009)Google Scholar
  11. 11.
    Intel. Intel vtune performance analyzer, http://software.intel.com/en-us/intel-vtune/
  12. 12.
    ISO/IEC/JTC1/SC29/WG11, C.D.: 15938-3 MPEG-7 Multimedia Content Description Interface - Part 3. MPEG Document W3703 (2000)Google Scholar
  13. 13.
    Huang, J., Kumar, S.R., Mitra, M., Zhu, W.J., Zabih, R.: Image Indexing using Color Correlograms. In: Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition, pp. 762–768. IEEE Computer Society, Los Alamitos (1997)Google Scholar
  14. 14.
    Wu, P., Ro, Y.M., Won, C.S., Choi, Y.: Texture Descriptors in MPEG-7. In: Skarbek, W. (ed.) CAIP 2001. LNCS, vol. 2124, pp. 21–28. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Nichols, B., Buttlar, D., Farrell, J.P.: Pthreads Programming. O’Reilly & Associates, Inc., Sebastopol (1996)Google Scholar
  16. 16.
    Wan,Y., Yuan, Q., Ji, S., He, L., Wang, Y.: Intel. Intel icc compiler, http://software.intel.com/en-us/intel-compilers/
  17. 17.
    Wang.: A survey of the image copy detection. In: IEEE Conference on Cybernetics and Intelligent Systems (2008)Google Scholar
  18. 18.
    Berrani, S., Amsaleg, L., Gros, P.: Robust content-based image searches for copyright protection. In: Proceedings of ACM Workshop on Multimedia Databases (2003)Google Scholar
  19. 19.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features, pp. 511–518 (2001)Google Scholar
  20. 20.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture representation using local affine regions. Technical Report CVR-TR-2004-01, Beckman Institute, University of Illinois (2004)Google Scholar
  22. 22.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 10(27), 1615–1630 (2005)CrossRefGoogle Scholar
  23. 23.
    Ke, Y., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 506–513 (2004)Google Scholar
  24. 24.
    Feng, H., Li, E., Chen, Y., Zhang, Y.: Parallelization and characterization of sift on multi-core systems. In: IISWC 2008, pp. 14–23 (2008)Google Scholar
  25. 25.
    Zhang, Q., Chen, Y., Zhang, Y., Xu, Y.: Sift implementation and optimization for multi-core systems. In: Parallel and Distributed Processingv (IPDPS), pp. 1–8 (2008)Google Scholar
  26. 26.
    Sinha, S., Frahm, J.-M., Pollefeys, M., Genc, Y.: Feature tracking and matching in video using programmable graphics hardware. In: Machine Vision and Applications (2007)Google Scholar
  27. 27.
    Heymann, S., Muller, K., Smolic, A., Froehlich, B., Wiegand, T.: SIFT implementation and optimization for general-purpose GPU. In: WSCG (2007)Google Scholar
  28. 28.
    Warn, S., Emeneker, W., Cothren, J., Apon, A.: Accelerating SIFT on Parallel Architectures. In: Cluster Computing and Workshops(CLUSTER), pp. 1–4 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Donglei Yang
    • 1
  • Lili Liu
    • 1
  • Feiwen Zhu
    • 1
  • Weihua Zhang
    • 1
  1. 1.Parallel Processing InstituteFudan UniversityChina

Personalised recommendations