Production Control Strategies (PCS)

Chapter
Part of the Management for Professionals book series (MANAGPROF)

Abstract

After understanding basic concepts of PCS, their influence on operational performance, and current research in the field, now conclusions will be drawn and the following work be positioned.

Keywords

Lead Time Kanban System Base Stock Level Material Requirement Planning Pull System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alicke K (2005) Planung und betrieb von logistiknetzwerken: unternehmensübergreifendes supply chain management (VDI-Buch), 2nd edn. Springer, Berlin (in German)Google Scholar
  2. Arnold D, Furmans K (2009) Materialfluss in logistiksystemen, 6th edn. Springer, Berlin (in German)CrossRefGoogle Scholar
  3. Babai MZ, Dallery Y, Industriel LG (2009) Dynamic versus static control policies in single stage production-inventory systems. Int J Prod Res 47:415–433CrossRefGoogle Scholar
  4. Baker KR, Scudder GD (1990) Sequencing with earliness and tardiness penalties: a review. Oper Res 28:22–36CrossRefGoogle Scholar
  5. Baynat B, Buzacott JA, Dallery Y (2002) Multiproduct kanban-like control systems. Int J Prod Res 40:4225–4255CrossRefGoogle Scholar
  6. Beamon BM, Bermudo JM (2000) A hybrid push/pull control algorithm for multistage, multiline production systems. Prod Plan Contr 11:349–356CrossRefGoogle Scholar
  7. Bechte W (1988) Theory and practice of load-oriented manufacturing control. Int J Prod Res 26:375–395CrossRefGoogle Scholar
  8. Bechte W (1984) Steuerung der durchlaufzeit durch belastungsorientierte auftragsfreigabe bei werkstattfertigung. VDI-Verlag, Düsseldorf (in German)Google Scholar
  9. Benton WC, Shin H (1998) Manufacturing planning and control: the evolution of MRP and JIT integration. Eur J Oper Res 110:411–440CrossRefGoogle Scholar
  10. Berkley BJ (1992) A review of the Kanban production control research literature. Prod Oper Manag 1:393–412CrossRefGoogle Scholar
  11. Bertrand JWM, Wortmann JC (1981) Production control and information systems for component manufacturing shops. Elsevier Science, New YorkGoogle Scholar
  12. Blazewicz J, Ecker KH, Pesch E, Schmidt G, Weglarz J (2001) Scheduling computer and manufacturing processes, 2nd edn. Springer, New YorkGoogle Scholar
  13. Bonney MC, Zhang Z, Head MA, Tien CC, Barson RJ (1999) Are push and pull systems really so different? Int J Prod Econ 59:53–64CrossRefGoogle Scholar
  14. Bonvik AM, Gershwin SB (1996) Beyond Kanban: creating and analyzing lean shop floor control policies. In: Manufacturing and service operations management conference, tuck school of management. Dartmouth College, Hanover NHGoogle Scholar
  15. Brucker P (2007) Scheduling algorithms, 5th edn. Springer, BerlinGoogle Scholar
  16. Buzacott JA (1989) Queuing models of Kanban and MRP controlled production systems. Eng Costs Prod Econ 17:3–20CrossRefGoogle Scholar
  17. Buzacott JA, Shanthikumar JG (1992) A general approach for coordinating production in Multiple-Cell manufacturing systems. Prod Oper Manag 1:34–52CrossRefGoogle Scholar
  18. Chaouiya C, Liberopoulos G, Dallery Y (2000) The extended kanban control system for production coordination of assembly manufacturing systems. IIE Trans 32:999–1012Google Scholar
  19. Clark AJ, Scarf H (1960) Optimal policies for a multi-echelon inventory problem. Manag Sci 6:475–490CrossRefGoogle Scholar
  20. Claudio D, Krishnamurthy A (2009) Kanban-based pull systems with advance demand information. Int J Prod Res 47:3139–3160CrossRefGoogle Scholar
  21. Claudio D, Zhang J, Zhang Y (2007) A hybrid inventory control system approach applied to the food industry. In: Proceedings of the 39th conference on Winter simulation: 40 years! The best is yet to come, Washington D.C.Google Scholar
  22. Cochran JK, Kaylani HA (2008) Optimal design of a hybrid push/pull serial manufacturing system with multiple part types. Int J Prod Res 46:949–965CrossRefGoogle Scholar
  23. Dallery Y, Liberopoulos G (2000) Extended kanban control system: combining kanban and base stock. IIE Trans 32:369–386Google Scholar
  24. Drew J, McCallum B, Roggenhofer S (2004) Journey to lean: making operational change stick. Palgrave Macmillan, HampshireGoogle Scholar
  25. Flapper SDP, Miltenburg GJ, Wijngaard J (1991) Embedding JIT into MRP. Int J Prod Res 29:329–341CrossRefGoogle Scholar
  26. Framinan JM, Gonzalez PL, Ruiz-Usano R (2003) The CONWIP production control system: review and research issues. Prod Plan Contr 14:255–265CrossRefGoogle Scholar
  27. Framinan JM, Ruiz-Usano R, Leisten R (2001) Sequencing CONWIP flow-shops: analysis and heuristics. Int J Prod Res 39:2735–2749CrossRefGoogle Scholar
  28. Framinan JM, Ruiz-Usano R, Leisten R (2000) Input control and dispatching rules in a dynamic CONWIP flow-shop. Int J Prod Res 38:4589–4598CrossRefGoogle Scholar
  29. Gaury EGA (2000) Designing pull production control systems: Customization and robustness. Ph.D. thesis, Tilburg University.Google Scholar
  30. Gaury EGA, Kleijnen JPC, Pierreval H (2001) A methodology to customize pull control systems. J Oper Res Soc 52:789–799CrossRefGoogle Scholar
  31. Gaury EGA, Pierreval H, Kleijnen JPC (2000) An evolutionary approach to select a pull system among kanban, conwip and hybrid. J Intell Manuf 11:157–167CrossRefGoogle Scholar
  32. Gayon JP, Benjaafar S, Vericourt F (2009) Using imperfect advance demand information in production-inventory systems with multiple customer classes. Manuf Serv Oper Manag 11:128–143CrossRefGoogle Scholar
  33. Gelbke S (2008) Einsatz von multiagentensystemen im fertigungsmanagement: grundlagen, entwurf und analyse. Vdm Verlag Dr. Müller, SaarbrückenGoogle Scholar
  34. Geraghty J (2003) An investigation of pull-type production control mechanisms for lean manufacturing environments in the presence of variability in the demand process. Ph.D. Thesis, University of Limerick, Ireland.Google Scholar
  35. Geraghty J, Heavey C (2005) A review and comparison of hybrid and pull-type production control strategies. OR Spectrum 27:435–457CrossRefGoogle Scholar
  36. Geraghty J, Heavey C (2004) A comparison of Hybrid Push/Pull and CONWIP/Pull production inventory control policies. Int J Prod Econ 91:75–90CrossRefGoogle Scholar
  37. Glassey CR, Resende MGC (1988) Closed-loop job release control for VLSI circuit manufacturing. IEEE Trans Semicond Manuf 1:36–46CrossRefGoogle Scholar
  38. Goldratt EM, Fox RE (1986) The race. North River Press Croton-on-Hudson, New YorkGoogle Scholar
  39. Goncalves P (2000) The impact of shortages on push-pull production systems. Techreport, Sloan School of Management, Massachusetts Institute of Technology, CambridgeGoogle Scholar
  40. Grosfeld-Nir A, Magazine M, Vanberkel A (2000) Push and Pull strategies for controlling multistage production systems. Int J Prod Res 38:2361–2375CrossRefGoogle Scholar
  41. Gstettner S, Kuhn H (1996) Analysis of production control systems kanban and CONWIP. Int J Prod Res 34:3253–3273CrossRefGoogle Scholar
  42. Günther HO, Tempelmeier H (2009) Produktion und logistik, 8th edn. Springer, Berlin (in German)Google Scholar
  43. Hall RW (1986) Syncro-MRP: combining kanban and MRP, the Yamaha PYMAC system. In: Driving the productivity machine: production planning and control in Japan. American Production & Inventory Control Society, USAGoogle Scholar
  44. Hirakawa Y (1996) Performance of a multistage hybrid push/pull production control system. Int J Prod Econ 44:129–135CrossRefGoogle Scholar
  45. Hodgson TJ, Wang DW (1991a) Optimal hybrid push/pull strategies for a parallel multistage system: Part 1. Int J Prod Res 29:1279–1287CrossRefGoogle Scholar
  46. Hopp WJ, Spearman ML (2008) Factory physics, 3rd edn. McGraw-Hill, BostonGoogle Scholar
  47. Hoshino K (1996) Criterion for choosing ordering policies – between fixed-size and fixed-interval, pull-type and push-type. Int J Prod Econ 44:91–95CrossRefGoogle Scholar
  48. Howard RA (1983) The evolution of decision analysis. In: Howard RA (ed) Decision analysis – A collection of readings. Department of Management Science and Engineering, Stanford UniversityGoogle Scholar
  49. Howard RA, Matheson JE (1984) Influence diagrams. In: Howard RA, Matheson JE (eds) Readings on the principles and applications of decision analysis. Strategic Decisions Group, Menlo ParkGoogle Scholar
  50. Huang HH (2002) Integrated production model in agile manufacturing systems. Int J Adv Manuf Technol 20:515–525CrossRefGoogle Scholar
  51. Huang M, Wang DW, Ip WH (1998) A simulation and comparative study of CONWIP Kanban and MRP production control system in a cold rolling plant. Prod Plan Contr 9:803–812CrossRefGoogle Scholar
  52. Jacobs FR, Bendoly E (2003) Enterprise resource planning: developments and directions for operations management research. Eur J Oper Res 146:233–240CrossRefGoogle Scholar
  53. Jensen MT (2001) Robust and flexible scheduling with evolutionary computation. Ph.D. Thesis, University of Aarhus.Google Scholar
  54. Karaesmen F, Buzacott JA, Dallery Y (2002) Integrating advance order information in make-to-stock production systems. IIE Trans 34:649–662Google Scholar
  55. Karaesmen F, Liberopoulos G, Dallery Y (2004) The value of advance demand information in production/inventory systems. Ann Oper Res 126:135–157CrossRefGoogle Scholar
  56. Khoo LP, Lee SG, Yin XF (2001) Agent-based multiple shop floor manufacturing scheduler. Int J Prod Res 39:3023–3040CrossRefGoogle Scholar
  57. Kilsun K, Chhajed D, Paleak US (2002) A comparative study of the performance of push and pull systems in the presence of emergency orders. Int J Prod Res 40:1627–1646CrossRefGoogle Scholar
  58. Kimura O, Terada H (1981) Design and analysis of pull system, a method of multi-stage production control. Int J Prod Res 19:241–253CrossRefGoogle Scholar
  59. Kleijnen JPC, Gaury EGA (2003) Short-term robustness of production management systems: a case study. Eur J Oper Res 148:452–465CrossRefGoogle Scholar
  60. Kleinau P, Thonemann UW (2004) Deriving inventory-control policies with genetic programming. OR Spectr 26:521–546Google Scholar
  61. Koh SG, Bulfin RL (2004) Comparison of DBR with CONWIP in an unbalanced production line with three stations. Int J Prod Res 42:391–404Google Scholar
  62. Kosturiak J, Gregor M (1995) Total production control. Prod Plan Contr 6:490–499CrossRefGoogle Scholar
  63. Law AM, Kelton WD (2008) Simulation modeling and analysis, 4th edn. McGraw-Hill, BostonGoogle Scholar
  64. Lee YH, Lee B (2003) Push-pull production planning of the re-entrant process. Int J Adv Manuf Technol 22:922–931CrossRefGoogle Scholar
  65. Lee-Mortimer A (2008) A continuing lean journey: an electronic manufacturer’s adopting of Kanban. Assem Autom 28(2):103–112CrossRefGoogle Scholar
  66. Li H, Liu L (2006) Production control in a two-stage system. Eur J Oper Res 174:887–904CrossRefGoogle Scholar
  67. Li J, Meerkov SM (2009) Production systems engineering. Springer, New YorkCrossRefGoogle Scholar
  68. Liberopoulos G (2008) On the trade-off between optimal order-base-stock levels and demand lead-times. Eur J Oper Res 190:136–155CrossRefGoogle Scholar
  69. Liberopoulos G, Chronis A, Koukoumialos S (2003) Base stock policies with some unreliable advance demand information. In: Proceedings of the 4th Aegean International Conference on Analysis of Manufacturing Systems, Samos Island.Google Scholar
  70. Liberopoulos G, Dallery Y (2000) A unified framework for pull control mechanisms in multi-stage manufacturing systems. Ann Oper Res 93:325–355CrossRefGoogle Scholar
  71. Lödding H (2008) Verfahren der fertigungssteuerung. Grundlagen, beschreibung, konfiguration. Springer, Berlin (in German)Google Scholar
  72. Maes J, VanWassenhove LN (1991) Functionalities of production-inventory control systems. Prod Plan Contr 2:219–227CrossRefGoogle Scholar
  73. Masin M, Prabhu V (2009) AWIP: a simulation-based feedback control algorithm for scalable design of self-regulating production control systems. IIE Trans 41:120–133CrossRefGoogle Scholar
  74. Mitra D, Mitrani I (1989) Control and coordination policies for systems with buffers. Perform Eval Rev 17:156–164CrossRefGoogle Scholar
  75. Montgomery DC (2009) Design and analysis of experiments, 7th edn. Wiley, New YorkGoogle Scholar
  76. Mönch L (2006) Agentenbasierte produktionssteuerung komplexer produktionssysteme. Ein agentenbasierter Ansatz. Vieweg+Teubner, Braunschweig (in German)CrossRefGoogle Scholar
  77. Neumann K, Morlock M (2002) Operations research, 2nd edn. Hanser, MünchenGoogle Scholar
  78. Nyhuis P, Wiendahl HP (1999) Logistische kennlinien. Springer, Berlin (in German)Google Scholar
  79. Ohno T (1988) Toyota production system: beyond large-cale production. Productivity Press, New YorkGoogle Scholar
  80. Olhager J (2003) Strategic positioning of the order penetration point. Int J Prod Econ 85:319–329CrossRefGoogle Scholar
  81. Olhager J, Ostlund B (1990) An integrated push-pull manufacturing strategy. Eur J Oper Res 45:135–142CrossRefGoogle Scholar
  82. Orlicky J (1975) Material requirements planning: the new way of life in production and inventory management. McGraw-Hill, New YorkGoogle Scholar
  83. Ozbayrak M, Akgun M, Turker AK (2004) Activity-based cost estimation in a push/pull advanced manufacturing system. Int J Prod Econ 87:49–65CrossRefGoogle Scholar
  84. Ozbayrak M, Papadopoulou TC, Samaras E (2006) A flexible and adaptable planning and control system for an MTO supply chain. Robotics Comp Intergrated Manuf 22:557–565CrossRefGoogle Scholar
  85. Pandy PC, Khokhajaikiat P (1996) Performance modeling of multistage production systems operating under hybrid push/pull control. Int J Prod Econ 43:17–28CrossRefGoogle Scholar
  86. Papadopoulou TC, Mousavit A (2007) Dynamic job-shop lean scheduling and conwip shop-floor control using software agents. In: Proceedings. IET International Conference on Agile Manufacturing ICAM 2007, DurhamGoogle Scholar
  87. Perona M, Portioli A (1996) An enhanced loading model for the probabilistic workload control under workload imbalance. Prod Plan Contr 7:68–78CrossRefGoogle Scholar
  88. Persentili E, Alptekin E (2000) Product flexibility in selecting manufaturing planning and control. Int J Prod Res 38:2011–2021CrossRefGoogle Scholar
  89. Pinedo M (2008) Scheduling: theory, algorithms, and systems, 3rd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  90. Pyke DF, Cohen MA (1990) Push and pull in manufacturing and distribution systems. J Oper Manag 9:24–43CrossRefGoogle Scholar
  91. Razmi J, Rahnejat H, Khan MK (1998) The application of analytic hierarchy process in classification of material planning and control systems. Int J Oper Prod Manag 18:1134–1151CrossRefGoogle Scholar
  92. Razmi J, Rahnejat H, Khan MK (1996) A model to define hybrid systems at the interface between push and pull systems. In: Advanced Manufacturing Processes, Systems and Technologies (AMPST 96)Google Scholar
  93. Rother M, Shook J (1998) Learning to see. Lean Enterprise Institute, BrooklineGoogle Scholar
  94. Rücker T (2006) Optimale materialflusssteuerung in heterogenen produktionssystemen. Deutscher Universitätsverlag, Wiesbaden (in German)Google Scholar
  95. Sabuncuoglu I, Bayiz M (2000) Analysis of reactive scheduling problems in a job shop environment. Eur J Oper Res 126:567–586CrossRefGoogle Scholar
  96. Sarker BR, Fitzsimmons JA (1989) The performance of push and pull systems: a simulation and comparative study. Int J Prod Res 27:1715–1732CrossRefGoogle Scholar
  97. Scheer AW (2007) CIM Computer Integrated Manufacturing: Der computergesteuerte Industriebetrieb, 4th edn. Springer, BerlinGoogle Scholar
  98. Schwarzendahl R (1996) The introduction of Kanban principles to material management in EWSD production. Prod Plan Contr 7:212–221CrossRefGoogle Scholar
  99. Sharma S, Agrawal N (2009) Selection of a pull production control policy under different demand situations for a manufacturing system by AHP-algorithm. Comput Oper Res 36:1622–1632CrossRefGoogle Scholar
  100. Simchi-Levi D, Kaminsky P, Simchi-Levi E (2007) Designing and managing the suppy chain, 3rd edn. McGraw-Hill, BostonGoogle Scholar
  101. Slomp J, Bokhorst JAC, Germs R (2009) A lean production control system for high-variety/low-volume environments: a case study implementation. Prod Plan Contr 20:586–595CrossRefGoogle Scholar
  102. Spearman ML, Zazanis MA (1992) Push and pull production systems: issues and comparisons. Oper Res 40:521–532CrossRefGoogle Scholar
  103. Stadtler H, Kilger C (2008) Supply chain management and advanced planning: concepts, models, software, and case studies, 4th edn. Springer, BerlinGoogle Scholar
  104. Stocker UM, Waldmann KH (2003) Stochastische modelle: eine anwendungsorientierte einführung. Springer, Berlin (in German)Google Scholar
  105. Stuber F (1998) Approaches to shop floor scheduling – a critical review. In: Scherer E (ed) Shop floor control, a systems perspective: from deterministic models towards agile operations management. Springer, BerlinGoogle Scholar
  106. Suri R (1998) Quick response manufacturing. Productivity Press, New YorkGoogle Scholar
  107. Takahashi K, Nakamura N (2002) Decentralized reactive Kanban system. Eur J Oper Res 139:262–276CrossRefGoogle Scholar
  108. Takahashi K, Soshiroda M (1996) Comparing integration strategies in production ordering systems. Int J Prod Econ 44:83–89CrossRefGoogle Scholar
  109. Tan T, Güllü R, Erkip N (2007) Modeling imperfect advance demand information and analysis of optimal inventory policies. Eur J Oper Res 177:897–923CrossRefGoogle Scholar
  110. Tardif V, Maaseidvaag L (2001) An adaptive approach to controlling kanban systems. Eur J Oper Res 132:411–424CrossRefGoogle Scholar
  111. Tempelmeier H (2001) Master planning mit advanced planning systems. Books on Demand, Norderstedt (in German)Google Scholar
  112. Treharne JT, Sox CR (2002) Adaptive inventory control for nonstationary demand and partial information. Manag Sci 48:607CrossRefGoogle Scholar
  113. Tsubone H, Kuroya T, Matsuura H (1999) The impact of order release strategies on the manufacturing performance for shop floor control. Prod Plan Contr 10:58–66CrossRefGoogle Scholar
  114. Vinod V, Sridharan R (2009) Simulation-based metamodels for scheduling a dynamic job shop with sequence-dependent setup times. Int J Prod Res 47:1425–1447CrossRefGoogle Scholar
  115. Wang DW, Chen XZ (1996) Experimental push/pull production planning and control system. Prod Plan Cont 7:236–241CrossRefGoogle Scholar
  116. Wang DW, Xu CG (1997) Hybrid push/pull production control strategy simulation and its applications. Prod Plan Contr 8:142–151CrossRefGoogle Scholar
  117. Weitzman R, Rabinowitz G (2003) Sensitivity of push and pull strategies to information updating rate. Int J Prod Res 41:2057–2074CrossRefGoogle Scholar
  118. Womack JP, Jones DT (2003) Lean thinking: banish waste and create wealth in your corporation, revised and updated. Free Press, New YorkGoogle Scholar
  119. Womack JP, Jones DT, Roos D (2007) The machine that changed the world: the story of lean production. Free Press, New YorkGoogle Scholar
  120. Xiong G, Nyberg TR (2000) Push/pull production plan and schedule used in modern refinery CIMS. Robotics Comp Intergrated Manuf 16:397–410CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.McKinsey & Company, Inc.MünchenGermany

Personalised recommendations