An Evaluation on Estimators for Stochastic and Heuristic Based Cost Functions Using the Epipolar-Constraint

  • Anton Feldmann
  • Lars Krüger
  • Franz Kummert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6930)

Abstract

Camera calibration is a process of optimizing the camera parameters. This paper describes an evaluation of different stochastic and heuristic estimators for cost function minimization used in camera calibration.

The optimization algorithm is a standard gradient walk on the epipolar-constraint. The results show estimators work similar on the given set of correspondence. Correspondences selected to a given distribution over the frame gives better calibration results, especially the results on the yaw angle estimation show more robust results. In this paper the distribution will uniformly distributed over the frame using binning [1,2].

The data used in this paper shows binning does lower the error behavior in most calibrations. The \(\mathcal{L}^1\)-norm and \(\mathcal{L}^2\)-norm using binning does not reach an error with respect to the ground truth higher 4 pix. The calibrations rejecting binning shows an impulse on the 970 calibration. To avoid this impulse binning is used.

Binning influences the calibration result more as the choice of the right m-estimator or the right norm.

Keywords

Ground Truth Roll Angle Camera Calibration Fundamental Matrix Camera Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Feldmann, A., Krüger, L., Kummert, F.: Quality measure in epipolar geometry for vehicle mounted stereo camera systems. In: Luhmann, T., Müller, C. (eds.) Photogrammetrie Laserscanning Optische 3D-Messtechnik (Beiträge der Oldenburger 3D-Tage 2011). Wichmann Verlag, Heidelberg (to appear, 2011)Google Scholar
  2. 2.
    Dang, T., Hoffmann, C.: Stereo calibration in vehicles. In: IEEE Intelligent Vehicles Symposium, vol. 4, pp. 268–273 (2004)Google Scholar
  3. 3.
    Luhmann, T., Robson, S., Reeves, C., Wainwright, P., Kyle, S.: Close range Photogrametry:Principles, Methods and Applications, vol. 1. Whittles Publishing (2006)Google Scholar
  4. 4.
    Pollefeys, M.: Self-calibration and metric 3D reconstruction from uncalibrated image sequences. PhD thesis, K.U.Leuven (1999)Google Scholar
  5. 5.
    Krüger, L., Emmert, V., Feldmann, A., Lindner, F.: Evaluating the accuracy of camera calibration for driver assistance systems. In: Luhmann, T., Müller, C. (eds.) Photogrammetrie Laserscanning Optische 3D-Messtechnik Paper Describes an Evaluation of Different Stochastic and Heuristic est (Beiträge der Oldenburger 3D-Tage 2011). Wichmann Verlag, Heidelberg (to appear, 2011) Google Scholar
  6. 6.
    Krüger, L.: Model Based Object Classification and Localisation in Multiocular Images. PhD thesis, University of Bielefeld (2007)Google Scholar
  7. 7.
    Dang, T.: Kontinuierliche Selbstkalibrierung von Stereokameras. PhD thesis, Institut für Mess- und Regelungstechnik mit Maschinenlaboratorium, MRT (2007)Google Scholar
  8. 8.
    Wöhler, C.: 3D Computer Vision. Efficient Methods and Applications. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004) ISBN: 0521540518CrossRefMATHGoogle Scholar
  10. 10.
    Faugeras, O., Luong, Q.T., Papadopoulou, T.: The Geometry of Multiple Images: The Laws That Govern The Formation of Images of A Scene and Some of Their Applications. MIT Press, Cambridge (2001)MATHGoogle Scholar
  11. 11.
    Xu, G., Zhang, Z.: Epipolar Geometry in Stereo, Motion, and Object Recognition: A Unified Approach. Kluwer Academic Publishers, Norwell (1996)CrossRefMATHGoogle Scholar
  12. 12.
    Torr, P.H.S., Murray, D.W.: Outlier detection and motion segmentation. In: SPIE, vol. 2059, pp. 432–443 (1995)Google Scholar
  13. 13.
    Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment – A modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Barrois, B.: Analyse der Position, Orientierung und Bewegung von rigiden und artikulierten Objekten aus Stereobildsequenzen. PhD thesis, University Bielefeld (2010)Google Scholar
  15. 15.
    Longuet-Higgins, H.C.: A computer algorithm for reconstructing a scene from two projections. Nature 293, 133–135 (1981)CrossRefGoogle Scholar
  16. 16.
    Luong, Q.T.: Matrice fondamentale et auto-calibration en vision par ordinateur. PhD thesis, Universite de Paris-Sud, Orsay (1992)Google Scholar
  17. 17.
    Luong, Q.T., Faugeras, O.D.: The fundamental matrix: Theory, algorithms, and stability analysis. International Journal of Computer Vision 17, 43–75 (1996)CrossRefGoogle Scholar
  18. 18.
    Stein, F.J.: Efficient computation of optical flow using the census transform. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 79–86. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Draper, N.R., Smith, H.: Applied Regression Analysis (Wiley Series in Probability and Statistics), 3rd edn. Wiley Interscience, Hoboken (1998)Google Scholar
  21. 21.
    Klenke, A.: Wahrscheinlichkeitstheorie. Springer, Heidelberg (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Anton Feldmann
    • 1
  • Lars Krüger
    • 1
  • Franz Kummert
    • 2
  1. 1.Daimler AGAdvanced ResearchUlmGermany
  2. 2.Faculty of TechnologyUniversity BielefeldBielefeldGermany

Personalised recommendations