Visualization of Instruments in interventional Magnetic Particle Imaging (iMPI): A Simulation Study on SPIO Labelings

  • Hanne Wojtczyk
  • Julian Haegele
  • Mandy Grüttner
  • Wiebke Tenner
  • Gael Bringout
  • Matthias Graeser
  • Florian M. Vogt
  • Jörg Barkhausen
  • Thorsten M. Buzug
Part of the Springer Proceedings in Physics book series (SPPHY, volume 140)

Abstract

Due to its ability for quantitative 3D real time imaging with high sensitivity and spatial resolution but without ionizing radiation and iodine-based contrast agents, Magnetic Particle Imaging shows great promise for the application to the image guidance of cardiovascular interventions. For this purpose, the blood in the vessels and the instruments would have to be visualized, e.g. using a SPIO-based contrast agent and a SPIO labeling, respectively (SPIO: superparamagnetic iron oxide). In a simulation study of this situation, simple models of a guide wire and a catheter with a coated tip as well as a filled balloon catheter have been examined under a variety of conditions. The appearance of the instruments in the reconstructed images has been shown to be strongly dependent on the imaging parameters (gradient strength), the difference of the SPIO concentrations in adjacent structures as well as the geometric extensions of the instrument and its position inside the vessel (partial volume effect). It has been demonstrated that the visualization of instruments in a vessel may be possible with positive or negative contrast, depending on the individual circumstances.

Keywords

Guide Wire Partial Volume Effect Superparamagnetic Iron Oxide Negative Contrast Gradient Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gleich, B., Weizenecker, J.: Tomographic imaging using the nonlinear response of magnetic particles. Nature 435, 1214–1217 (2005)CrossRefGoogle Scholar
  2. 2.
    Weizenecker, J., Gleich, B., Rahmer, J., Dahnke, H., Borgert, J.: Three-dimensional real-time in vivo magnetic particle imaging. Phys. Med. Biol. 54, L1–L10 (2009)CrossRefGoogle Scholar
  3. 3.
    Hieb, B., Müller, C., Jung, F., Hünigen, H., Hamm, B., Plendl, J., Niehues, S.M.: Macro- and micromorphometric studies of the vascular structures from the Göttingen® minipig. Applied Cardiopulmonary Pathophysiology 13(4), 318–321 (2009)Google Scholar
  4. 4.
    Rahmer, J., Weizenecker, J., Gleich, B., Borgert, J.: Signal encoding in magnetic particle imaging: properties of the system function. BMC Medical Imaging 9(4), 21 pages (2009)Google Scholar
  5. 5.
    Haegele, J., Rahmer, J., Gleich, B., Bontus, C., Borgert, J., Wojtczyk, H., Buzug, T.M., Barkhausen, J., Vogt, F.M.: Visualization of instruments for car-dio-vas-cu-lar intervention using MPI. In: 2nd International Workshop on Magnetic Particle Imaging, IWMPI 2012 (accepted, 2012)Google Scholar
  6. 6.
    Rauwerdink, A.M., Giustini, A.J., Weaver, J.B.: Simultaneous quantification of multiple magnetic nanoparticles. Nanotechnology 21(45), 5 pages (2010)Google Scholar
  7. 7.
    Rauwerdink, A.M., Weaver, J.B.: Concurrent quantification of multiple nanoparticle bound states. Med. Phys. 38(3), 1136–1140 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Hanne Wojtczyk
    • 1
  • Julian Haegele
    • 2
  • Mandy Grüttner
    • 1
  • Wiebke Tenner
    • 1
  • Gael Bringout
    • 1
  • Matthias Graeser
    • 1
  • Florian M. Vogt
    • 2
  • Jörg Barkhausen
    • 2
  • Thorsten M. Buzug
    • 1
  1. 1.Institute of Medical EngineeringUniversity of LübeckLübeckGermany
  2. 2.Clinic for Radiology and Nuclear MedicineUniversity Hospital Schleswig-HolsteinLübeckGermany

Personalised recommendations