An Application of Model Checking Games to Abstract Argumentation

  • Davide Grossi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6953)


The paper presents a logical study of abstract argumentation theory. It introduces a second-order modal logic, within which all main known semantics for abstract argumentation can be formalized, and studies the model checking game of this logic. The application of the game to the formalized semantics yields adequate game-theoretic proof procedures for all known extension-based semantics, in both their skeptical and credulous versions.


Modal Logic Winning Strategy Argumentation Theory Argumentation Framework Dialogue Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence 77(2), 321–358 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baroni, P., Giacomin, M.: Semantics of abstract argument systems. In: Rahwan, I., Simari, G.R. (eds.) Argumentation in Artifical Intelligence. Springer, Heidelberg (2009)Google Scholar
  3. 3.
    Modgil, S., Caminada, M.: Proof theories and algorithms for abstract argumentation frameworks. In: Rahwan, I., Simari, G. (eds.) Argumentation in AI, pp. 105–132. Springer, Heidelberg (2009)Google Scholar
  4. 4.
    Grädel, E.: Model checking games. In: de Queiroz, R., Pereira, L.C., Haeusler, E.H. (eds.) Proceedings of WOLLIC 2002. Electronic Notes in Theoretical Computer Science, vol. 67, pp. 15–34. Elsevier, Amsterdam (2002)Google Scholar
  5. 5.
    Grossi, D.: On the logic of argumentation theory. In: van der Hoek, W., Kaminka, G., Lespérance, Y., Sen, S. (eds.) Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010), IFAAMAS, pp. 409–416 (2010)Google Scholar
  6. 6.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  7. 7.
    Fine, K.: Propositional quantifiers in modal logic. Theoria 36, 336–346 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Venema, Y.: Lectures on the modal μ-calculus. Renmin University in Beijing, China (2008)Google Scholar
  9. 9.
    Dung, P.M., Mancarella, P., Toni, F.: A dialectic procedure for sceptical assumption-based argumentation. In: Proceedings of the 1st International Conference on Computational Models of Argument (COMMA 2006), pp. 145–156. IOS Press, Amsterdam (2006)Google Scholar
  10. 10.
    Dung, P.M., Thang, P.M.: A unified framework for representation and development of dialectical proof procedures in argumentation. In: Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence (IJCAI-2009), pp. 746–751 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Davide Grossi
    • 1
  1. 1.ILLC, University of AmsterdamAmsterdamThe Netherlands

Personalised recommendations