Self-organising Pervasive Ecosystems: A Crowd Evacuation Example

  • Sara Montagna
  • Mirko Viroli
  • Matteo Risoldi
  • Danilo Pianini
  • Giovanna Di Marzo Serugendo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6968)


The dynamics of pervasive ecosystems are typically highly unpredictable, and therefore self-organising approaches are often exploited to make their applications resilient to changes and failures. The SAPERE approach we illustrate in this paper aims at addressing this issue by taking inspiration from natural ecosystems, which are regulated by a limited set of “laws” evolving the population of individuals in a self-organising way. Analogously, in our approach, a set of so-called eco-laws coordinate the individuals of the pervasive computing system (humans, devices, signals), in a way that is shown to be expressive enough to model and implement interesting real-life scenarios. We exemplify the proposed framework discussing a crowd evacuation application, tuning and validating it by simulation.


pervasive computing software ecosystems self-adaptation self-organisation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Autili, M., Di Benedetto, P., Inverardi, P.: Context-aware adaptive services: The PLASTIC approach. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 124–139. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Banâtre, J.P., Priol, T.: Chemical programming of future service-oriented architectures. Journal of Software 4, 738–746 (2009)CrossRefGoogle Scholar
  3. 3.
    Berry, G., Boudol, G.: The chemical abstract machine. In: POPL, pp. 81–94 (1990)Google Scholar
  4. 4.
    Casadei, M., Gardelli, L., Viroli, M.: Simulating emergent properties of coordination in Maude: the collective sort case. In: Proceedings of FOCLASA 2006. Electronic Notes in Theoretical Computer Science, vol. 175(2), pp. 59–80. Elsevier Science B.V., Amsterdam (2007)Google Scholar
  5. 5.
    Ciocchetta, F., Duguid, A., Guerriero, M.L.: A compartmental model of the cAMP/PKA/MAPK pathway in Bio-PEPA. CoRR abs/0911.4984 (2009)Google Scholar
  6. 6.
    Costa, P.D., Guizzardi, G., Almeida, J.P.A., Pires, L.F., van Sinderen, M.: Situations in conceptual modeling of context. In: EDOC 2006, p. 6. IEEE-CS, Los Alamitos (2006)Google Scholar
  7. 7.
    Fernandez-Marquez, J.L., Arcos, J.L., Di Marzo Serugendo, G., Viroli, M., Montagna, S.: Description and composition of bio-inspired design patterns: the gradient case. In: Proceedings of the 3rd Workshop on Bio-Inspired and Self-* Algorithms for Distributed Systems, ACM, Karlsruhe (2011)Google Scholar
  8. 8.
    Fok, C.L., Roman, G.C., Lu, C.: Enhanced coordination in sensor networks through flexible service provisioning. In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009. LNCS, vol. 5521, pp. 66–85. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems with many species and many channels. The Journal of Physical Chemistry A 104(9), 1876–1889 (2000)CrossRefGoogle Scholar
  10. 10.
    Iliasov, A., Laibinis, L., Romanovsky, A., Sere, K., Troubitsyna, E.: Towards rigorous engineering of resilient pervasive systems. In: Proceedings of Seventh European Dependable Computing Conference, IEEE Computer Society, Los Alamitos (2008)Google Scholar
  11. 11.
    Macal, C.M., North, M.J.: Tutorial on agent-based modelling and simulation. Journal of Simulation 4, 151–162 (2010)CrossRefGoogle Scholar
  12. 12.
    Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing applications: The tota approach. ACM Trans. Softw. Eng. Methodol. 18(4), 1–56 (2009)CrossRefGoogle Scholar
  13. 13.
    Montagna, S., Viroli, M.: A framework for modelling and simulating networks of cells. In: Proceedings of the CS2Bio 2010 Workshop. ENTCS, vol. 268, pp. 115–129. Elsevier Science B.V, Amsterdam (2010)Google Scholar
  14. 14.
    Murphy, A.L., Picco, G.P., Roman, G.C.: Lime: A model and middleware supporting mobility of hosts and agents. ACM Trans. on Software Engineering and Methodology 15(3), 279–328 (2006)CrossRefGoogle Scholar
  15. 15.
    Omicini, A., Zambonelli, F.: Coordination for Internet application development. In: Autonomous Agents and Multi-Agent Systems, vol. 2(3), pp. 251–269 (September 1999), special Issue: Coordination Mechanisms for Web Agents,
  16. 16.
    Paun, G.: Membrane Computing: An Introduction. Springer-Verlag New York, Inc., Secaucus (2002)CrossRefzbMATHGoogle Scholar
  17. 17.
    Priami, C.: Stochastic pi-calculus. The Computer Journal 38(7), 578–589 (1995)CrossRefGoogle Scholar
  18. 18.
    Railsback, S.F., Lytinen, S.L., Jackson, S.K.: Agent-based simulation platforms: Review and development recommendations. Simulation 82(9), 609–623 (2006)CrossRefGoogle Scholar
  19. 19.
    Román, M., Hess, C.K., Cerqueira, R., Ranganathan, A., Campbell, R.H., Nahrstedt, K.: Gaia: a middleware platform for active spaces. Mobile Computing and Communications Review 6(4), 65–67 (2002)CrossRefGoogle Scholar
  20. 20.
    Roy, P.V., Haridi, S., Reinefeld, A., Stefany, J.B.: Self management for large-scale distributed systems: An overview of the SELFMAN project. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382, pp. 153–178. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Tchao, A., Risoldi, M., Di Marzo Serugendo, G.: Modeling self-* systems using chemically-inspired composable patterns. In: Proceedings of the 5th IEEE International Conference on Self-Adaptive and Self-Organizing Systems. IEEE-CS, Los Alamitos (2011)Google Scholar
  22. 22.
    Viroli, M., Casadei, M.: Biochemical tuple spaces for self-organising coordination. In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009. LNCS, vol. 5521, pp. 143–162. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Viroli, M., Casadei, M., Montagna, S., Zambonelli, F.: Spatial coordination of pervasive services through chemical-inspired tuple spaces. ACM Transactions on Autonomous and Adaptive Systems 6(2), 14:1–14:24 (2011)CrossRefGoogle Scholar
  24. 24.
    Viroli, M., Zambonelli, F.: A biochemical approach to adaptive service ecosystems. Information Sciences 180(10), 1876–1892 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sara Montagna
    • 1
    • 2
  • Mirko Viroli
    • 1
    • 2
  • Matteo Risoldi
    • 1
    • 2
  • Danilo Pianini
    • 1
    • 2
  • Giovanna Di Marzo Serugendo
    • 1
    • 2
  1. 1.Università di BolognaCesenaItaly
  2. 2.Université de GenèveCarougeSwitzerland

Personalised recommendations