Idealized Fault-Tolerant Components in Requirements Engineering

  • Sadaf Mustafiz
  • Jörg Kienzle
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6968)

Abstract

We have previously proposed a requirements development process, DREP, for dependable systems. In this paper, we draw a parallel between the notions defined in DREP and the elements of idealized fault-tolerant components (IFTCs). We show how the key ideas of IFTCs can be re-interpreted at the requirements engineering level and mapped to DREP concepts.

Keywords

Requirement Engineering Service Request Requirement Engineer Dependable System Requirement Elicitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, T., Lee, P.: Fault Tolerance - Principles and Practice. Prentice-Hall, Englewood Cliffs (1981)MATHGoogle Scholar
  2. 2.
    Davis, A.M.: Software requirements: objects, functions, and states. Prentice-Hall, Englewood Cliffs (1993)MATHGoogle Scholar
  3. 3.
    Shui, A., Mustafiz, S., Kienzle, J., Dony, C.: Exceptional use cases. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 568–583. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Mustafiz, S., Kienzle, J.: DREP: A requirements engineering process for dependable reactive systems. In: Butler, M., Jones, C., Romanovsky, A., Troubitsyna, E. (eds.) Methods, Models and Tools for Fault Tolerance. LNCS, vol. 5454, pp. 220–250. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Mustafiz, S.: Dependability-Oriented Model-Driven Requirements Engineering for Reactive Systems. PhD thesis, McGill University (2010)Google Scholar
  6. 6.
    Rubira, C.M.F., de Lemos, R., Ferreira, G.R.M., Filho, F.C.: Exception handling in the development of dependable component-based systems. Software, Practice & Experience 35, 195–236 (2005)CrossRefGoogle Scholar
  7. 7.
    de Lemos, R., de Castro Guerra, P.A., Rubira, C.M.F.: A fault-tolerant architectural approach for dependable systems. IEEE Software 23, 80–87 (2006)CrossRefGoogle Scholar
  8. 8.
    Bucchiarone, A., Muccini, H., Pelliccione, P.: Architecting fault-tolerant component-based systems: from requirements to testing. Electr. Notes Theor. Comput. Sci. 168, 77–90 (2007)CrossRefGoogle Scholar
  9. 9.
    da S. Brito, P.H., Rocha, C.R., Filho, F.C., Martins, E., Rubira, C.M.F.: A method for modeling and testing exceptions in component-based software development. In: Maziero, C.A., Gabriel Silva, J., Andrade, A.M.S., de Assis Silva, F.M. (eds.) LADC 2005. LNCS, vol. 3747, pp. 61–79. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Horning, J.J., Lauer, H.C., Melliar-Smith, P.M., Randell, B.: A program structure for error detection and recovery. In: Goos, G., Hartmanis, F., (eds.) Operating Systems. LNCS, vol. 16, pp. 172–187. Springer, Heidelberg (1974)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sadaf Mustafiz
    • 1
  • Jörg Kienzle
    • 1
  1. 1.School of Computer ScienceMcGill UniversityMontrealCanada

Personalised recommendations