Leveraging Channel Diversity to Gain Efficiency and Robustness for Wireless Broadcast

  • Shlomi Dolev
  • Seth Gilbert
  • Majid Khabbazian
  • Calvin Newport
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6950)

Abstract

This paper addresses two primary questions: (i) How much faster can we disseminate information in a large wireless network if we have multiple communication channels available (as compared to relying on only a single communication channel)? (ii) Can we still disseminate information reliably, even if some subset of the channels are disrupted? In answer to the first question, we reduce the cost of broadcast to O(log log n) rounds/hop, approximately, for sufficiently many channels. We answer the second question in the affirmative, presenting two different algorithms, while at the same time proving a lower bound showing that disrupted channels have unavoidable costs.

Keywords

Collision Detection Constant Probability Wireless Broadcast Broadcast Algorithm Multihop Radio Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    IEEE 802.11. Wireless LAN MAC and Physical Layer Specifications (June 1999)Google Scholar
  2. 2.
    Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A Lower Bound for Radio Broadcast. Journal of Computer System Sciences 43(2), 290–298 (1991)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bar-Yehuda, R., Goldreich, O., Itai, A.: On the Time-Complexity of Broadcast in Multi-Hop Radio Networks: An Exponential Gap Between Determinism and Randomization. Journal of Computer and System Sciences 45(1), 104–126 (1992)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bluetooth Consortium. Bluetooth Specification Version 2.1 (July 2007)Google Scholar
  5. 5.
    Chlamtac, I., Kutten, S.: On Broadcasting in Radio Networks: Problem Analysis and Protocol Design. IEEE Transactions on Communications 33(12), 1240–1246 (1985)CrossRefMATHGoogle Scholar
  6. 6.
    Chlamtac, I., Weinstein, O.: The wave expansion approach to braodcasting in multihop radio networks. IEEE Transactions on Communications 39, 426–433 (1991)CrossRefGoogle Scholar
  7. 7.
    Chlebus, B.S., Gasieniec, L., Gibbons, A., Pelc, A., Rytter, W.: Deterministic Broadcasting in Ad Hoc Radio Networks. Distributed Computing 15(1), 27–38 (2002)CrossRefMATHGoogle Scholar
  8. 8.
    Chlebus, B.S., Gasieniec, L., Gibbons, A., Pelc, A., Rytter, W.: Deterministic Broadcasting in Unknown Radio Networks. In: Proceedings of the Symposium on Discrete Algorithms (2000)Google Scholar
  9. 9.
    Clementi, A., Monti, A., Silvestri, R.: Round Robin is Optimal for Fault-Tolerant Broadcasting on Wireless Networks. Journal of Parallel and Distributed Computing 64(1), 89–96 (2004)CrossRefMATHGoogle Scholar
  10. 10.
    Czumaj, A., Rytter, W.: Broadcasting Algorithms in Radio Networks with Unknown Topology. In: Proceedings of the Symposium on Foundations of Computer Science (2003)Google Scholar
  11. 11.
    Dolev, S., Gilbert, S., Guerraoui, R., Kowalski, D.R., Newport, C., Kohn, F., Lynch, N.: Reliable Distributed Computing on Unreliable Radio Channels. In: The Proceedings of the 2009 MobiHoc S 3 Workshop (2009)Google Scholar
  12. 12.
    Dolev, S., Gilbert, S., Guerraoui, R., Kuhn, F., Newport, C.: The Wireless Synchronization Problem. In: Proceedings of the International Symposium on Principles of Distributed Computing (2009)Google Scholar
  13. 13.
    Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.: Gossiping in a Multi-Channel Radio Network: An Oblivious Approach to Coping with Malicious Interference. In: Proceedings of the International Symposium on Distributed Computing (2007)Google Scholar
  14. 14.
    Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.: Secure Communication Over Radio Channels. In: Proceedings of the International Symposium on Principles of Distributed Computing (2008)Google Scholar
  15. 15.
    Drabkin, V., Friedman, R., Segal, M.: Efficient byzantine broadcast in wireless ad hoc networks. In: Proceedings of the Conference on Dependable Systems and Networks, pp. 160–169 (2005)Google Scholar
  16. 16.
    Gasieniec, L., Peleg, D., Xin, Q.: Faster Communication in Known Topology Radio Networks. Distributed Computing 19(4), 289–300 (2007)CrossRefMATHGoogle Scholar
  17. 17.
    Gilbert, S., Guerraoui, R., Kowalski, D., Newport, C.: Interference-Resilient Information Exchange. In: The Proceedings of the Conference on Computer Communication (2009)Google Scholar
  18. 18.
    Khabbazian, M., Kowalski, D., Kuhn, F., Lynch, N.: Decomposing Broadcast Algorithms Using Abstract MAC Layers. In: Proceedings of the International Workshop on Foundations of Mobile Computing (2010)Google Scholar
  19. 19.
    Koo, C.-Y.: Broadcast in radio networks tolerating byzantine adversarial behavior. In: Proceedings of the International Symposium on Principles of Distributed Computing, pp. 275–282 (2004)Google Scholar
  20. 20.
    Koo, C.-Y., Bhandari, V., Katz, J., Vaidya, N.H.: Reliable broadcast in radio networks: The bounded collision case. In: Proceedings of the International Symposium on Principles of Distributed Computing (2006)Google Scholar
  21. 21.
    Kowalski, D., Pelc, A.: Broadcasting in Undirected Ad Hoc Radio Networks. In: Proceedings of the International Symposium on Principles of Distributed Computing (2003)Google Scholar
  22. 22.
    Kowalski, D., Pelc, A.: Time of Deterministic Broadcasting in Radio Networks with Local Knowledge. SIAM Journal on Computing 33(4), 870–891 (2004)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Kowalski, D., Pelc, A.: Optimal Deterministic Broadcasting in Known Topology Radio Networks. Distributed Computing 19(3), 185–195 (2007)CrossRefMATHGoogle Scholar
  24. 24.
    Kuhn, F., Lynch, N., Newport, C.: The Abstract MAC Layer. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 48–62. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Kushilevitz, E., Mansour, Y.: An Ω(D log(N/D)) Lower Bound for Broadcast in Radio Networks. SIAM Journal on Computing 27(3), 702–712 (1998)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Newport, C.: Distributed Computation on Unreliable Radio Channels. PhD thesis. MIT (2009)Google Scholar
  27. 27.
    Pelc, A., Peleg, D.: Feasibility and Complexity of Broadcasting with Random Transmission Failures. In: Proceedings of the International Symposium on Principles of Distributed Computing (2005)Google Scholar
  28. 28.
    Richa, A., Scheideler, C., Schmid, S., Zhang, J.: A Jamming-Resistant MAC Protocol for Multi-Hop Wireless Networks. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 179–193. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  29. 29.
    Schneider, J., Wattenhofer, R.: What Is the Use of Collision Detection (in Wireless Networks)? In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 133–147. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  30. 30.
    Strasser, M., Pöpper, C., Capkun, S.: Efficient Uncoordinated FHSS Anti-jamming Communication. In: Proceedings International Symposium on Mobile Ad Hoc Networking and Computing (2009)Google Scholar
  31. 31.
    Strasser, M., Pöpper, C., Capkun, S., Cagalj, M.: Jamming-resistant Key Establishment using Uncoordinated Frequency Hopping. In: The Proceedings of the IEEE Symposium on Security and Privacy (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Shlomi Dolev
    • 1
  • Seth Gilbert
    • 2
  • Majid Khabbazian
    • 3
  • Calvin Newport
    • 4
  1. 1.Ben-Gurion UniversityBeershebaIsrael
  2. 2.National University of SingaporeSingapore
  3. 3.University of WinnipegWinnipegCanada
  4. 4.MIT CSAILCambridgeUSA

Personalised recommendations