DISC 2011 Invited Lecture: Deterministic Rendezvous in Networks: Survey of Models and Results

  • Andrzej Pelc
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6950)

Abstract

Two or more mobile entities, called agents or robots, starting at distinct initial positions in some environment, have to meet. This task is known in the literature as rendezvous. Among many alternative assumptions that have been used to study the rendezvous problem, two most significantly influence the methodology appropriate for its solution. The first of these assumptions concerns the environment in which the mobile entities navigate: it can be either a terrain in the plane, or a network modeled as an undirected graph. In the case of networks, methods and results further depend on whether the agents have the ability to mark nodes in some way. The second assumption concerns the way in which the entities move: it can be either deterministic or randomized. In this paper we survey models and results concerning deterministic rendezvous in networks, where agents cannot mark nodes.

Keywords

mobile agent rendezvous deterministic network graph 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alpern, S.: Rendezvous search: A personal perspective. Operations Research 50, 772–795 (2002)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Alpern, S., Gal, S.: The theory of search games and rendezvous. International Series in Operations Research and Management Science. Kluwer Acad. Publ., Dordrecht (2003)MATHGoogle Scholar
  3. 3.
    Baba, D., Izumi, T., Ooshita, F., Kakugawa, H., Masuzawa, T.: Space-optimal rendezvous of mobile agents in asynchronous trees. In: Patt-Shamir, B., Ekim, T. (eds.) SIROCCO 2010. LNCS, vol. 6058, pp. 86–100. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Bampas, E., Czyzowicz, J., Gasieniec, L., Ilcinkas, D., Labourel, A.: Almost optimal asynchronous rendezvous in infinite multidimensional grids. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 297–311. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the Robots Gathering Problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Czyzowicz, J., Kosowski, A., Pelc, A.: How to meet when you forget: Log-space rendezvous in arbitrary graphs. In: Proc. 29th Annual ACM Symposium on Principles of Distributed Computing (PODC 2010), pp. 450–459 (2010)Google Scholar
  7. 7.
    Czyzowicz, J., Kosowski, A., Pelc, A.: Time vs. space trade-offs for rendezvous in trees (submitted)Google Scholar
  8. 8.
    Czyzowicz, J., Labourel, A., Pelc, A.: How to meet asynchronously (almost) everywhere. In: Proc. 21st ACM-SIAM Symp. on Discrete Algorithms (SODA 2010), pp. 22–30 (2010)Google Scholar
  9. 9.
    De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asynchronous deterministic rendezvous in graphs. Theoretical Computer Science 355, 315–326 (2006)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Dessmark, A., Fraigniaud, P., Kowalski, D., Pelc, A.: Deterministic rendezvous in graphs. Algorithmica 46, 69–96 (2006)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Flocchini, P., Mans, B., Santoro, N.: Sense of direction: definition, properties and classes. Networks 32, 165–180 (1998)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Fraigniaud, P., Pelc, A.: Deterministic rendezvous in trees with little memory. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 242–256. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Fraigniaud, P., Pelc, A.: Delays induce an exponential memory gap for rendezvous in trees. In: Proc. 22nd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2010), pp. 224–232 (2010)Google Scholar
  14. 14.
    Fraigniaud, P., Pelc, A.: Delays induce an exponential memory gap for rendezvous in trees, arXiv:1102.0467v1 [cs.DC]Google Scholar
  15. 15.
    Izumi, T., Izumi, T., Kamei, S., Ooshita, F.: Mobile robots gathering algorithm with local weak multiplicity in rings. In: Patt-Shamir, B., Ekim, T. (eds.) SIROCCO 2010. LNCS, vol. 6058, pp. 101–113. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: Gathering of asynchronous oblivious robots on a ring. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 446–462. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots in a ring. Theoretical Computer Science 390, 27–39 (2008)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Kowalski, D., Malinowski, A.: How to meet in anonymous network. Theoretical Computer Science 399, 141–156 (2008)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Kranakis, E., Krizanc, D., Markou, E.: The mobile agent rendezvous problem in the ring. Morgan and Claypool Publishers (2010)Google Scholar
  20. 20.
    Kranakis, E., Krizanc, D., Rajsbaum, S.: Mobile agent rendezvous: A survey. In: Flocchini, P., Gąsieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 1–9. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Stachowiak, G.: Asynchronous Deterministic Rendezvous on the Line. In: Nielsen, M., Kučera, A., Miltersen, P.B., Palamidessi, C., Tůma, P., Valencia, F. (eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 497–508. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts and strongly universal exploration sequences. In: Proc. 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2007), pp. 599–608 (2007)Google Scholar
  23. 23.
    Yamashita, M., Kameda, T.: Computing on Anonymous Networks: Part I-Characterizing the Solvable Cases. IEEE Trans. Parallel Distrib. Syst. 7, 69–89 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Andrzej Pelc
    • 1
  1. 1.Département d’informatiqueUniversité du Québec en OutaouaisGatineauCanada

Personalised recommendations