Lamps: A Test Problem for Cooperative Coevolution

  • Alberto Tonda
  • Evelyne Lutton
  • Giovanni Squillero
Part of the Studies in Computational Intelligence book series (SCI, volume 387)

Abstract

We present an analysis of the behaviour of Cooperative Co-evolution algorithms (CCEAs) on a simple test problem, that is the optimal placement of a set of lamps in a square room, for various problems sizes. Cooperative Co-evolution makes it possible to exploit more efficiently the artificial Darwinism scheme, as soon as it is possible to turn the optimisation problem into a co-evolution of interdependent sub-parts of the searched solution. We show here how two cooperative strategies, Group Evolution (GE) and Parisian Evolution (PE) can be built for the lamps problem. An experimental analysis then compares a classical evolution to GE and PE, and analyses their behaviour with respect to scale.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amaya, J.E., Cotta, C., Leiva, A.J.F.: A memetic cooperative optimization schema and its application to the tool switching problem. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 445–454. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Barrire, O., Lutton, E., Wuillemin, P.H.: Bayesian network structure learning using cooperative coevolution. In: Genetic and Evolutionary Computation Conference, GECCO 2009 (2009)Google Scholar
  3. 3.
    Bongard, J., Lipson, H.: Active coevolutionary learning of deterministic finite automata. Journal of Machine Learning Research 6, 1651–1678 (2005)MathSciNetMATHGoogle Scholar
  4. 4.
    Boumaza, A.M., Louchet, J.: Dynamic flies: Using real-time parisian evolution in robotics. In: Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith, R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H. (eds.) EvoIASP 2001, EvoWorkshops 2001, EvoFlight 2001, EvoSTIM 2001, EvoCOP 2001, and EvoLearn 2001. LNCS, vol. 2037, pp. 288–297. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Bucci, A., Pollacj, J.B.: On identifying global optima in cooperative coevolution. In: Proceedings of the 2005 Conference on Genetic and Evolutionary, Washington DC, USA (2005)Google Scholar
  6. 6.
    Chen, W., Weise, T., Yang, Z., Tang, K.: Large-scale global optimization using cooperative coevolution with variable interaction learning. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 300–309. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Collet, P., Lutton, E., Raynal, F., Schoenauer, M.: Polar ifs + parisian genetic programming = efficient ifs inverse problem solving. Genetic Programming and Evolvable Machines Journal 1(4), 339–361 (2000)MATHCrossRefGoogle Scholar
  8. 8.
    De Jong, E.D., Stanley, K.O., Wiegand, R.P.: Introductory tutorial on coevolution. In: Proceedings of the 2007 GECCO Conference Companion on Genetic and Evolutionary Computation, London, United Kingdom (2007)Google Scholar
  9. 9.
    Dunn, E., Olague, G., Lutton, E.: Automated photogrammetric network design using the parisian approach. In: EvoIASP 2005, Lausanne, nominated for the best paper Award (2005)Google Scholar
  10. 10.
    Landrin-Schweitzer, Y., Collet, P., Lutton, E.: Introducing lateral thinking in search engines. GPEM, Genetic Programming an Evolvable Hardware Journal 1(7), 9–31 (2006); Banzhaf, W., et al (eds.)CrossRefGoogle Scholar
  11. 11.
    Lutton, E., Olague, G.: Parisian camera placement for vision metrology. Pattern Recognition Letters 27(11), 1209–1219 (2006)CrossRefGoogle Scholar
  12. 12.
    Ochoa, G., Lutton, E., Burke, E.K.: Cooperative royal road functions. In: Evolution Artificielle, Tours, France, October 29-31 (2007)Google Scholar
  13. 13.
    Panait, L., Luke, S., Harrison, J.F.: Archive-based cooperative coevolutionary algorithms. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, Seattle, Washington, USA (2006)Google Scholar
  14. 14.
    Popovici, E., De Jong, K.: The effects of interaction frequency on the optimization performance of cooperative coevolution. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, Seattle, Washington, USA (2006)Google Scholar
  15. 15.
    Potter, M.A., Couldrey, C.: A cooperative coevolutionary approach to partitional clustering. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 374–383. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Sanchez, E., Schillaci, M., Squillero, G.: Evolutionary Optimization: the μGP toolkit, 1st edn. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Sanchez, E., Squillero, G., Tonda, A.: Group evolution: Emerging synergy through a coordinated effort. In: Proceedings of the 2011 IEEE Congress of Evolutionary Computation, CEC (2011)Google Scholar
  18. 18.
    Vidal, F.P., Louchet, J., Rocchisani, J.-M., Lutton, É.: New genetic operators in the fly algorithm: Application to medical PET image reconstruction. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcazar, A.I., Goh, C.-K., Merelo, J.J., Neri, F., Preuß, M., Togelius, J., Yannakakis, G.N. (eds.) EvoApplicatons 2010. LNCS, vol. 6024, pp. 292–301. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Wiegand, R.P., Potter, M.A.: Robustness in cooperative coevolution. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, Seattle, Washington, USA (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alberto Tonda
    • 1
  • Evelyne Lutton
    • 2
  • Giovanni Squillero
    • 3
  1. 1.ISC-PIF, CNRS CREAUMR 7656ParisFrance
  2. 2.AVIZ Team, INRIA Saclay - Ile-de-France, Bat 490Université Paris-SudORSAY CedexFrance
  3. 3.Dip. Automatica e InformaticaPolitecnico di TorinoTorinoItaly

Personalised recommendations