Steel Sheet Incremental Cold Shaping Improvements Using Hybridized Genetic Algorithms with Support Vector Machines and Neural Networks

  • Laura Puigpinós
  • José R. Villar
  • Javier Sedano
  • Emilio Corchado
  • Joaquim de Ciurana
Part of the Studies in Computational Intelligence book series (SCI, volume 387)


The complexity and difficulties in modelling the most of nowadays real world problems increase as the computational capacity does, specially in those processes where relatively new technology arises. One of such processes is the steel sheet incremental cold shaping. The steel sheet incremental cold shaping process is a new technique for shaping metal sheets when a reduced amount of pieces per lots should be manufactured. As it is a relatively new technique, there is a lack of knowledge in defining the operating conditions, so in order to fit them, before manufacturing a lot a trial and error stage is carried out. A decision support system to reduce the cost of processing and to assist in defining the operating conditions should be studied. This study focus on the analysis and design of the decision support system, and as it is going to be shown, the most suitable features have been found using a wrapper feature selection method, in which genetic algorithms support vector machines and neural networks are hybridized. Some facts concerning the enhanced experimentation needed and the improvements in the algorithm are drawn.


Support Vector Machine Feature Selection Feature Subset Feature Subset Selection Technical Trading Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altun, A.A., Allahverdi, N.: Neural Network Based Recognition by Using Genetic Algorithm for Feature Selection of Enhanced Fingerprints. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4432, pp. 467–476. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Bustillo, A., Sedano, J., Curiel, L., Villar, J.R., Corchado, E.: A Soft Computing System for Modelling the Manufacture of Steel Components. Advances in Soft Computing 57(3), 601–609 (2008)Google Scholar
  3. 3.
    Casillas, J., Cordón, O., del Jesus, M.J., Herrera, F.: Genetic Feature Selection in a Fuzzy Rule-Based Classification System Learning Process. Information Sciences 136(1-4), 135–157 (2001)zbMATHCrossRefGoogle Scholar
  4. 4.
    de la Cal, E., Fernández, E.M., Quiroga, R., Villar, J., Sedano, J.: Scalability of a Methodology for Generating Technical Trading Rules with GAPs Based on Risk-Return Adjustment and Incremental Training. In: Corchado, E., Graña Romay, M., Manhaes Savio, A. (eds.) HAIS 2010. LNCS, vol. 6077, pp. 143–150. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Fung, G.M., Mangasarian, O.L.: A Feature Selection Newton Method for Support Vector Machine Classification. Computational Optimization and Applications 28(2), 185–202 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Huanga, C.-L., Wang, C.-J.: A GA-based feature selection and parameters optimizationfor support vector machines. Expert Systems with Applications 31(2), 231–240 (2006)CrossRefGoogle Scholar
  7. 7.
    Mackay, D.J.C.: Bayesian interpolation. Neural Computation 4(3), 415–447 (1992)CrossRefGoogle Scholar
  8. 8.
    The MathWorks, MATLAB - The Language Of Technical Computing (2011),
  9. 9.
    Mohanty, I., Datta, S., Bhattacharjeeb, D.: Composition-Processing-Property Correlation of Cold-Rolled IF Steel Sheets Using Neural Network. Materials and Manufacturing Processes 24(1), 100–105 (2009)CrossRefGoogle Scholar
  10. 10.
    Redondo, R., Santos, P., Bustillo, A., Sedano, J., Villar, J.R., Correa, M., Alique, J.R., Corchado, E.: A Soft Computing System to Perform Face milling Operations. In: Omatu, S., Rocha, M.P., Bravo, J., Fernández, F., Corchado, E., Bustillo, A., Corchado, J.M. (eds.) IWANN 2009. LNCS, vol. 5518, pp. 1282–1291. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Sedano, J., Corchado, E., Curiel, L., Villar, J., Bravo, P.: The Application of a Two-Step AI Model to an Automated Pneumatic Drilling Process. Int. J. of Comp. Mat. 86(10-11), 1769–1777 (2008)CrossRefGoogle Scholar
  12. 12.
    Sedano, J., Curiel, L., Corchado, E., de la Cal, E., Villar, J.R.: A Soft Computing Based Method for Detecting Lifetime Building Thermal Insulation Failures. Int. Comp. Aided Eng. 17(2), 103–115 (2009)Google Scholar
  13. 13.
    Sedano, J., Villar, J.R., Curiel, L., de la Cal, E., Corchado, E.: Improving Energy Efficiency in Buildings Using Machine Intelligence. In: Corchado, E., Yin, H. (eds.) IDEAL 2009. LNCS, vol. 5788, pp. 773–782. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Villar, J.R., Suárez, M.R., Sedano, J., Mateos, F.: Unsupervised Feature Selection in High Dimensional Spaces and Uncertainty. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS 2009. LNCS, vol. 5572, pp. 565–572. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Villar, J.R., Berzosa, A., de la Cal, E., Sedano, J., Garcıa-Tamargo, M.: Multi-objective Simulated Annealing in Genetic Algorithm and Programming learning with low quality data. In publication for Neural Computing (2011)Google Scholar
  16. 16.
    Villar, J.R., Sedano, J., Corchado, E., Puigpinós, L.: Soft Computing decision support for a steel sheet incremental cold shaping process. Accepted for the Proc. of the 12th Int. Conf. on Intel. Data Eng. and A. L, IDEAL 2011 (2011)Google Scholar
  17. 17.
    Wong, M.L.D., Nandi, A.K.: Automatic digital modulation recognition using artificial neural network and genetic algorithm. Signal Proc. 84(2), 351–365 (2004)zbMATHCrossRefGoogle Scholar
  18. 18.
    Yang, J., Honavar, V.: Feature Subset Selection Using a Genetic Algorithm. IEEE Intelligent Systems 13(2), 44–49 (1998)CrossRefGoogle Scholar
  19. 19.
    Zhang, P., Verma, B., Kumar, K.: Neural vs. statistical classifier in conjunction with genetic algorithm based feature selection. Pat. Recog. Letters 28(7), 909–919 (2005)CrossRefGoogle Scholar
  20. 20.
    Zhao, J., Cao, H.Q., Ma, L.X., Wang, F.Q., Li, S.B.: Study on intelligent control technology for the deep drawing of an axi-symmetric shell part. J. of Materials Processing Tech. 151(1-3), 98–104 (2005)CrossRefGoogle Scholar
  21. 21.
    Zhao, J., Wang, F.: Parameter identification by neural network for intelligent deep drawing of axisymmetric workpieces. J. of Materials Processing Tech. 166(3), 387–391 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Laura Puigpinós
    • 1
  • José R. Villar
    • 2
  • Javier Sedano
    • 3
  • Emilio Corchado
    • 4
  • Joaquim de Ciurana
    • 5
  1. 1.Fundación Privada AscammAvda. Universitat AutònomaCerdanyola del VallésSpain
  2. 2.University of OviedoGijónSpain
  3. 3.Instituto Tecnológico de Castilla y LeónPoligono Industrial de VillalonquejarBurgosSpain
  4. 4.University of SalamancaSalamancaSpain
  5. 5.Escola Politècnica Superior Edifici PIIUniversity of GironaGironaSpain

Personalised recommendations