Gravitational Swarm Approach for Graph Coloring

  • Israel Rebollo Ruiz
  • Manuel Graña Romay
Part of the Studies in Computational Intelligence book series (SCI, volume 387)


We introduce a new nature inspired algorithm to solve the Graph Coloring Problem (GCP): the Gravitational Swarm. The Swarm is composed of agents that act individually, but that can solve complex computational problems when viewed as a whole. We formulate the agent’s behavior to solve the GCP. Agents move as particles in the gravitational field defined by some target objects corresponding to graph node colors. Knowledge of the graph to be colored is encoded in the agents as friend-or-foe information. We discuss the convergence of the algorithm and test it over well-known benchmarking graphs, achieving good results in a reasonable time.


Particle Swarm Optimization Chromatic Number Swarm Intelligence Graph Node Iterate Local Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akay, B., Karaboga, D.: A modified artificial bee colony algorithm for real-parameter optimization. Information Sciences, Corrected Proof (2010) (in press)Google Scholar
  2. 2.
    Brlaz, D.: New methods to color the vertices of a graph. Commun. ACM 22, 251–256 (1979)CrossRefGoogle Scholar
  3. 3.
    Cases, B., Hernandez, C., Graña, M., D’anjou, A.: On the ability of swarms to compute the 3-coloring of graphs. In: Bullock, S., Noble, J., Watson, R., Bedau, M.A. (eds.) Artificial Life XI: Proceedings of the Eleventh International Conference on the Simulation and Synthesis of Living Systems, pp. 102–109. MIT Press, Cambridge (2008)Google Scholar
  4. 4.
    Chiarandini, M., Süttzle, T.: An application of iterated local search to graph coloring problem. In: Proceedings of the Computational Symposium on Graph Coloring and its Generalizations, Fachgebiet Intellektik, Fachbereich Informatik, and Technische Universitt Darmstadt Darmstadt, pp. 112–125 (2002)Google Scholar
  5. 5.
    Chvtal, V.: Coloring the queen graphs. Web repository (2004) (last visited July 2005)Google Scholar
  6. 6.
    Corneil, D.G., Graham, B.: An algorithm for determining the chromatic number of a graph. SIAM J. Comput. 2(4), 311–318 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Cui, G., Qin, L., Liu, S., Wang, Y., Zhang, X., Cao, X.: Modified pso algorithm for solving planar graph coloring problem. Progress in Natural Science 18(3), 353–357 (2008)CrossRefGoogle Scholar
  8. 8.
    Dutton, R.D., Brigham, R.C.: A new graph colouring algorithm. The Computer Journal 24(1), 85–86 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Folino, G., Forestiero, A., Spezzano, G.: An adaptive flocking algorithm for performing approximate clustering. Information Sciences 179(18), 3059–3078 (2009)CrossRefGoogle Scholar
  10. 10.
    Galinier, P., Hertz, A.: A survey of local search methods for graph coloring. Comput. Oper. Res. 33(9), 2547–2562 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Ge, F., Wei, Z., Tian, Y., Huang, Z.: Chaotic ant swarm for graph coloring. In: 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS), vol. 1, pp. 512–516 (2010)Google Scholar
  12. 12.
    Graña, M., Cases, B., Hernandez, C., D’Anjou, A.: Further results on swarms solving graph coloring. In: Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, B.O. (eds.) ICCSA 2010. LNCS, vol. 6018, pp. 541–551. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Handl, J., Meyer, B.: Ant-based and swarm-based clustering. Swarm Intelligence 1, 95–113 (2007)CrossRefGoogle Scholar
  14. 14.
    Herrmann, F., Hertz, A.: Finding the chromatic number by means of critical graphs. J. Exp. Algorithmics 7, 10 (2002)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hsu, L.-Y., Horng, S.-J., Fan, P., Khan, M.K., Wang, Y.-R., Run, R.-S., Lai, J.-L., Chen, R.-J.: Mtpso algorithm for solving planar graph coloring problem. Expert Syst. Appl. 38, 5525–5531 (2011)CrossRefGoogle Scholar
  16. 16.
    Graay, M., Hernndez, C., Rebollo, I.: Aplicaciones de algoritmos estocasticos de otimizacin al problema de la disposicin de objetos no-convexos. Revista Investigacin Operacional 22(2), 184–191 (2001)Google Scholar
  17. 17.
    Johnson, D.S., Mehrotra, A., Trick, M. (eds.): Proceedings of the Computational Symposium on Graph Coloring and its Generalizations, Ithaca, New York, USA (2002)Google Scholar
  18. 18.
    Johnson, D.S., Trick, M.A.: Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, vol. 26. American Mathematical Society, Providence (1993)Google Scholar
  19. 19.
    Johnson, D.S., Trick, M.A. (eds.): Proceedings of the 2nd DIMACS Implementation Challenge. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 26. American Mathematical Society, Providence (1996)Google Scholar
  20. 20.
    Lewandowski, G., Condon, A.: Experiments with parallel graph coloring heuristics and applications of graph coloring, pp. 309–334Google Scholar
  21. 21.
    Mehrotra, A., Trick, M.: A column generation approach for graph coloring. INFORMS Journal on Computing 8(4), 344–354 (1996)zbMATHCrossRefGoogle Scholar
  22. 22.
    Mizuno, K., Nishihara, S.: Toward ordered generation of exceptionally hard instances for graph 3-colorability, pp. 1–8Google Scholar
  23. 23.
    Mycielski, J.: Sur le coloureage des graphes. Colloquium Mathematicum 3, 161–162 (1955)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Reynolds, C.: Steering behaviors for autonomous characters (1999)Google Scholar
  25. 25.
    Reynolds, C.W.: Flocks, herds, and schools: A distributed behavioral model. In: Computer Graphics, pp. 25–34 (1987)Google Scholar
  26. 26.
    Sundar, S., Singh, A.: A swarm intelligence approach to the quadratic minimum spanning tree problem. Information Sciences 180(17), 3182–3191 (2010); Including Special Section on Virtual Agent and Organization Modeling: Theory and ApplicationsMathSciNetCrossRefGoogle Scholar
  27. 27.
    Turner, J.S.: Almost all k-colorable graphs are easy to color. Journal of Algorithms 9(1), 63–82 (1988)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Israel Rebollo Ruiz
    • 1
  • Manuel Graña Romay
    • 2
  1. 1.Informática 68 Investigación y Desarrollo S.L., Computational Intelligence GroupUniversity of the Basque CountryBasque Country
  2. 2.Computational Intelligence GroupUniversity of the Basque CountryBasque Country

Personalised recommendations