Common Scab Detection on Potatoes Using an Infrared Hyperspectral Imaging System

  • Angel Dacal-Nieto
  • Arno Formella
  • Pilar Carrión
  • Esteban Vazquez-Fernandez
  • Manuel Fernández-Delgado
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6979)

Abstract

The common scab is a skin disease of the potato tubers that decreases the quality of the product and influences significantly the price. We present an objective and non-destructive method to detect the common scab on potato tubers using an experimental hyperspectral imaging system. A supervised pattern recognition experiment has been performed in order to select the best subset of bands and classification algorithm for the problem. Support Vector Machines (SVM) and Random Forest classifiers have been used. We map the amount of common scab in a potato tuber by classifying each pixel in its hyperspectral cube. The result is the percentage of the surface affected by common scab. Our system achieves a 97.1% of accuracy with the SVM classifier.

Keywords

Hyperspectral Infrared Potato SVM Random Forest 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Potato World - International Year of the Potato (2008), http://www.potato2008.org/en/world/index.html (accessed January 01, 2011)
  2. 2.
    Goetz, A., Vane, G., Solomon, J.E., Rock, B.N.: Imaging spectrometry for earth remote sensing. Sci. 228(4704), 1147–1153 (1985)CrossRefGoogle Scholar
  3. 3.
    Sun, D.: Hyperspectral Imaging for Food Quality Analysis and Control. Academic Press, Elsevier, San Diego, California (2009)Google Scholar
  4. 4.
    Singh, B.: Visible and near-infrared spectroscopic analysis of potatoes. M.Sc. Thesis. McGill University, Montreal, PQ, Canada (2005)Google Scholar
  5. 5.
    Al-Mallahi, A., Kataoka, T., Okamoto, H., Shibata, Y.: Detection of potato tubers using an ultraviolet imaging-based machine vision system. Biosyst. Eng. 105, 257–265 (2009)CrossRefGoogle Scholar
  6. 6.
    Buning-Pfaue, H.: Analysis of water in food by near-infrared spectroscopy. Food Chem. 82, 107–115 (2003)CrossRefGoogle Scholar
  7. 7.
    Kang, S., Lee, K., Son, J.: On-line internal quality evaluation system for the processing potatoes. In: Food Process. Autom. Conf. Proc., Providence, Rhode Island (2008)Google Scholar
  8. 8.
    Porteous, R.L., Muir, A.Y., Wastie, R.L.: The Identification of Diseases and Defects in Potato Tubers from Measurements of Optical Spectral Reflectance. J. Agric. Eng. Res. 26, 151–160 (1981)CrossRefGoogle Scholar
  9. 9.
    Bradski, G., Kaehler, A.: Learning OpenCV: Computer Vision with the OpenCV Library. O’Reilly Media, Sebastopol (2008)Google Scholar
  10. 10.
    Otsu, N.: A threshold selection method for gray level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)CrossRefGoogle Scholar
  11. 11.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11(1) (2009)Google Scholar
  12. 12.
    Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)MATHGoogle Scholar
  13. 13.
    García-López, F., García-Torres, M., Melián-Batista, B., Moreno-Pérez, J.A., Moreno-Vega, J.M.: Solving feature subset selection problem by a Parallel Scatter Search. Eur. J. Oper. Res. 169(2), 477–489 (2008)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Weihs, C.: Multivariate exploratory data analysis and graphics, a tutorial. J. Chemom. 7, 305–340 (1993)CrossRefGoogle Scholar
  15. 15.
    Guetlein, M., Frank, E., Hall, M., Karwath, A.: Large Scale Attribute Selection Using Wrappers. In: Proc. IEEE Symposium on Computational Intelligence and Data Mining, pp. 332–339 (2009)Google Scholar
  16. 16.
    Hall, M.: Correlation-based Feature Subset Selection for Machine Learning. Hamilton, New Zealand (1998)Google Scholar
  17. 17.
    Breiman, L.: Using Iterated Bagging to Debias Regressions. Mach. Learn. 45, 261–277 (2001)CrossRefMATHGoogle Scholar
  18. 18.
    Valentini, G., Dietterich, T.G.: Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods. J. Mach. Learn. Res. 5, 725–775 (2004)MathSciNetMATHGoogle Scholar
  19. 19.
    Chang, C.C., Lin, C.J.: LIBSVM:a library for support vector machines (2008), http://www.csie.ntu.edu.tw/~cjlin/libsvm/
  20. 20.
    Svetnik, V., Liaw, A., Tong, C., Culberson, J.C., Sheridan, R.P., Feuston, B.P.: Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling. J. Chem. Inf. Comput. Sci. 43, 1947–1958 (2003)CrossRefGoogle Scholar
  21. 21.
    Gunasekaran, S., Paulsen, M.R., Shove, G.C.: Optical methods for nondestructive quality evaluation of agricultural and biological materials. J. Agr. Eng. Res. 32, 209–241 (1985)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Angel Dacal-Nieto
    • 1
  • Arno Formella
    • 1
  • Pilar Carrión
    • 1
  • Esteban Vazquez-Fernandez
    • 2
  • Manuel Fernández-Delgado
    • 3
  1. 1.Computer Science DepartmentUniversidade de VigoOurenseSpain
  2. 2.GRADIANT, Galician R&D Center in Advanced TelecommunicationsSpain
  3. 3.Centro de Investigación en Tecnoloxías da Información (CITIUS)Universidade de Santiago de CompostelaSpain

Personalised recommendations