A Finite Element Blob Detector for Robust Features

  • Dermot Kerr
  • Sonya Coleman
  • Bryan Scotney
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6978)


Traditionally feature extraction is focussed on edge and corner detection, however, more recently points of interest and blob like features have also become prominent in the field of computer vision and are typically used to determine correspondences between two images of the same scene. We present a new approach to a Hessian blob detector, designed within the finite element framework, which is similar to the multi-scale approach applied in the SURF detector. We present performance evaluation that demonstrates the accuracy of our approach in comparison to well known existing algorithms.


blob detector finite element framework 


  1. 1.
    Agrawal, M., Konolige, K., Blas, M.R.: CenSurE: Center surround extremas for realtime feature detection and matching. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 102–115. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-Up Robust Features (SURF). CVIU 110, 346–359 (2008)Google Scholar
  3. 3.
    Davies, E.R.: Design of Optimal Gaussian Operators in Small Neighbourhoods. Image and Vision Computing 5(3), 199–205 (1987)CrossRefGoogle Scholar
  4. 4.
    Harris, C., Stephens, M.: A Combined Corner and Edge Detector. In: Proc. 4th Alvey Vision Conf., pp. 147–151 (1988)Google Scholar
  5. 5.
  6. 6.
    Kerr, D., Coleman, S., Scotney, B.: FESID: Finite element scale invariant detector. In: Foggia, P., Sansone, C., Vento, M. (eds.) ICIAP 2009. LNCS, vol. 5716, pp. 72–81. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer, Academic Publisher/Springer, Dordrecht, Netherlands (1994)CrossRefzbMATHGoogle Scholar
  8. 8.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: Proc. ICCV, pp. 1150–1157 (1999)Google Scholar
  9. 9.
    Marr, D., Hildreth, E.: Theory of Edge Detection. Proceedings of the Royal Society of London, 215–217 (1980)Google Scholar
  10. 10.
    Mikolajczyk, K., Schmid, C.: Scale & Affine Invariant Interest Point Detectors. IJCV 60, 63–86 (2004)CrossRefGoogle Scholar
  11. 11.
    Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L.: A Comparison of Affine Region Detectors. IJCV 65, 43–72 (2005)CrossRefGoogle Scholar
  12. 12.
    Scotney, B.W., Coleman, S.A.: Improving Angular Error via Systematically Designed Near-Circular Gaussian-based Feature Extraction Operators. Pattern Recognition 40(5), 1451–1465Google Scholar
  13. 13.
    Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: a survey. Foundations and Trends in Computer Graphics and Vision 3(3), 177–280 (2008)CrossRefGoogle Scholar
  14. 14.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: CVPR, vol. 1, pp. 511–518 (2001)Google Scholar
  15. 15.
    Zuniga, O.A., Haralick, R.M.: Integrated Directional Derivative Gradient Operator. IEEE Trans. on Systems, Man, and Cybernetics SMC-17(3), 508–517 (1987)CrossRefGoogle Scholar
  16. 16.
    Mikolajczyk, K.: Affine Covariant Features (July 15, 2007), (March 14, 2011)

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Dermot Kerr
    • 1
    • 2
  • Sonya Coleman
    • 1
    • 2
  • Bryan Scotney
    • 1
    • 2
  1. 1.School of Computing and Intelligent SystemsUniversity of UlsterMageeUK
  2. 2.School of Computing and Information EngineeringUniversity of UlsterColeraineUK

Personalised recommendations