Exploring Cascade Classifiers for Detecting Clusters of Microcalcifications

  • Claudio Marrocco
  • Mario Molinara
  • Francesco Tortorella
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6978)


The conventional approach to the detection of microcalcifications on mammographies is to employ a sliding window technique. This consists in applying a classifier function to all the subwindows contained in an image and taking each local maximum of the classifier as a possible position of a microcalcification. Although effective such an approach suffers from the high computational burden due to the huge number of subwindows contained in an image. The aim of this paper is to experimentally verify if such problem can be alleviated by a detection system which employs a cascade-based localization coupled with a clustering algorithm which exploits both the spatial coordinates of the localized regions and a confidence degree estimated on them by the final stage of the cascade. The first results obtained on a publicly available set of mammograms show that the method is promising and has large possibility of improvement.


Microcalcifications mammography computer aided detection Adaboost cascade of classifiers clustering 


  1. 1.
    El-Naqa, I., Yang, Y., Wernick, M.N., Galatsanos, N.P., Nishikawa, R.M.: A support vector machine approach for detection of microcalcifications. IEEE Transactions on Medical Imaging 21(12), 1552–1563 (2002)CrossRefGoogle Scholar
  2. 2.
    Wei, L., Yang, Y., Nishikawa, R.M., Jiang, Y.: A study on several machine-learning methods for classification of malignant and benign clustered microcalcifications. IEEE Transactions on Medical Imaging, 24(3), 371–380 (2005)CrossRefGoogle Scholar
  3. 3.
    Nishikawa, R.: Current status and future directions of computer-aided diagnosis in mammography. Computerized Medical Imaging and Graphics 31, 1357–1376 (2007)CrossRefGoogle Scholar
  4. 4.
    Wu, Y., Giger, M.L., Doi, K., Vyborny, C.J., Schmidt, R.A., Metz, C.E.: Artificial neural networks in mammography: Application to decision making in the diagnosis of breast cancer. Radiology 187, 81–87 (1993)CrossRefGoogle Scholar
  5. 5.
    Wei, L., Yang, Y., Nishikawa, R.M., Wernick, M.N., Edwards, A.: Relevance vector machine for automatic detection of clustered microcalcifications. IEEE Transactions on Medical Imaging 24(10), 1278–1285 (2005)CrossRefGoogle Scholar
  6. 6.
    Viola, P., Jones, M.: Robust real-time face detection. International Journal of Computer Vision 57, 137–154 (2004)CrossRefGoogle Scholar
  7. 7.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley & Sons, Chichester (2001)zbMATHGoogle Scholar
  8. 8.
    Marrocco, C., Molinara, M., Tortorella, F.: Algorithms for detecting clusters of microcalcifications in mammograms. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 884–891. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Kopans, D., Moore, R., Heath, M., Bowyer, K., Philip Kegelmeyer, W.: The digital database for screening mammography. In: Yaffe, M.J. (ed.) Proc. 5th Int. Workshop on Digital Mammography, pp. 212–218 (2001)Google Scholar
  10. 10.
    Ratsch, G., Onoda, T., Muller, K.R.: Soft margins for adaboost. Machine Learning 42(3), 287–320 (2001)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Claudio Marrocco
    • 1
  • Mario Molinara
    • 1
  • Francesco Tortorella
    • 1
  1. 1.DAEIMIUniversity of CassinoCassinoItaly

Personalised recommendations