Refractive Index Estimation of Naturally Occurring Surfaces Using Photometric Stereo

  • Gule Saman
  • Edwin R. Hancock
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6978)


This paper describes a novel approach to the computation of refractive index from polarisation information. Specifically, we use the refractive index measurements to gauge the quality of fruits and vegetables. We commence by using the method of moments to estimate the components of the polarisation image computed from intensity images acquired by employing multiple polariser angles. The method uses photometric stereo to estimate surface normals and then uses the estimates of surface normal, zenith angle and polarisation measurements to estimate the refractive index. The method is applied to surface inspection problems. Experiments on fruits and vegetables at different stages of decay illustrate the utility of the method in assessing surface quality.


Refractive index estimation Photometric stereo Polarisation Information Fresnel Theory 


  1. 1.
    Dunn, A., Richards-Kortum, R.: Three-Dimensional Computation of Light Scattering From Cells. IEEE Journal of Selected topics in Quantum Electronics 2(4) (1996)Google Scholar
  2. 2.
    Saidi, I., Jacques, S., Kittel, F.: Mie and Rayleigh modeling of visible-light scattering in neonatal skin. Applied Optics 34, 7410–7418 (1995)CrossRefGoogle Scholar
  3. 3.
    Yee, K.: Numerical Solutions of initial boundary value problems involving Maxwell’s equations in instotropic media. IEEE Transactions on Antennas Propagation AP-14, 302–307 (1966)zbMATHGoogle Scholar
  4. 4.
    Hecht, E.: Optics, 4th edn. Addison-Wesley, Reading (2002)Google Scholar
  5. 5.
    Wolff, L.B., Boult, T.E.: Constraining Object Features using a Polarisation Reflectance Model. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 635–657 (1991)CrossRefGoogle Scholar
  6. 6.
    Born, M., Wolf, E.: Principles of Optics, 7th edn. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  7. 7.
    Saman, G., Hancock, E.R.: Robust Computation of the Polarisation Image. In: International Conference on Pattern Recognition (2010)Google Scholar
  8. 8.
    Cooper, P., Thomas, M.: Geodesic Light Dome. Department of Computer Science, University of York, UK (March 2010), (accessed on: September 10, 2010)
  9. 9.
    Atkinson, G., Hancock, E.R.: Robust estimation of reflectance functions from polarization. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Woodham, R.J.: Photometric method for determining surface orientation from multiple images. Optical Engineering 19(1) (1980)Google Scholar
  11. 11.
    Coleman, E.N., Jain, R.: Obtaining 3-Dimensional Shape of textured and Specular surfaces using four-source photometry. Computer Graphics and Image Processing 18(4), 309–328 (1982)CrossRefGoogle Scholar
  12. 12.
    Atkinson, G., Hancock, E.R.: Recovery of Surface Orientation from Diffuse Polarization. IEEE Transactions on Image Processing 15(6) (2006)Google Scholar
  13. 13.
    Huynh, C.P., Robles-Kelly, A., Hancock, E.R.: Shape and Refractive Index Recovery from single-view polarisation images. In: IEEE Conference on Computer Vision and Pattern Recognition (2010)Google Scholar
  14. 14.
    Chang, H., Charalampopoulos, T.T.: Determination of the wavelength dependence of refractive indices of flame soot. Royal Society (1990)Google Scholar
  15. 15.
    Bashkatov, A.N., Genina, E.A., Kochubey, V.I., Tuchin, V.V.: Estimation of wavelength dependence of refractive index of collagen fibers of scleral tissue. In: Proceedings of SPIE, vol. 4162, p. 265 (2000)Google Scholar
  16. 16.
    Ding, H., Lu, J.Q., Wooden, W.A., Kragel, P.J., Hu, X.: Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600nm. Journal Physics in Medicine and Biology 51(6) (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Gule Saman
    • 1
  • Edwin R. Hancock
    • 1
  1. 1.Department of Computer ScienceUniversity of YorkUK

Personalised recommendations