Trace and ultra-trace element hydrochemistry of Lesvos thermal springs

  • E. Tziritis
  • A. Kelepertzis
Part of the Environmental Earth Sciences book series (EESCI)

Abstract

The present study examines the hydrochemical characteristics that rise from trace and ultra-trace elements of Lesvos thermal springs. Six main thermal springs were sampled and analyzed extensively for a large set of parameters. The detected concentrations of REE (La, Ce, Nd, Gd, Er, and U) are attributed to specific geochemical processes and environmental conditions, such as complexation, acidic environment and elevated temperatures. The presence of As is related with epithermal sulphide gold mineralization, as well as the presence of Pb, Sb, Cu, Zn and Fe. Germanium is correlated with the existence of Si-rich acid volcanic formations and possibly with Cu-rich sulphide minerals. Thallium is enriched in thermal waters of Lesvos, compared with other geothermal fields, and consists a significant environmental threat for human environment, due to its presence at the majority of the sampled springs which are used for blaneotherapy purposes.

Keywords

Thermal Water Thermal Spring Geothermal System Geothermal Field Volcanic Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5 References

  1. Arnorsson S (1984) Germanium in Icelandic geothermal systems. Geoch. Cosm. A. 48, 2489-2502CrossRefGoogle Scholar
  2. Bencini A, Duchi V, Casatello A, Kolios N, Fytikas M, Sbaragli L (2004) Geochemical study of fluids on Lesbos Island, Greece. Geothermics. 33, 637-654CrossRefGoogle Scholar
  3. Biddau R, Bensimon M, Cidu R, Parriaux A (2009) Rare earth elements in groundwater from different alpine aquifers. Chemie der Erde. 69, 327-339CrossRefGoogle Scholar
  4. Birkle P, Bundschuch J, Sracek O (2010) Mechanisms of arsenic enrichment in geothermal and petroleum reservoirs fluids in Mexico. Water Research. 44, 5605-5617CrossRefGoogle Scholar
  5. Cheam V (2001) Thallium contamination of water in Canada. Wat. Q. Res. J. Can. 36(4), 851-877Google Scholar
  6. Fytikas M, Kavouridis T, Leonis C, Marini L (1989) Geochemical exploration of the three most significant geothermal areas of Lesbos Island, Greece. Geothermics. No3. 18, 465-475CrossRefGoogle Scholar
  7. Gammons C, Wood S, Pedrozo F, Varekamp J, Nelson B, Shope C, Baffico G (2005) Hydrogeochemistry and rare earth element behaviour in a volcanically acidified watershed in Patagonia, Argentina. Chem. Geol. 222, 249-267CrossRefGoogle Scholar
  8. Johannesson KH, Zhou X (1999) Origin of middle RE element enrichments in acid waters of a Canadian high Arctic lake. Geochim. Cosmochim. Acta. 63, 153-165CrossRefGoogle Scholar
  9. Jongsma D (1974) Heat flow in the Aegean Sea. Geophys. J. R. astr. Soc.37, 337-346Google Scholar
  10. Kalenov AD, Anikeyeva VI, Maslenkov SB (1962) Germanium minerals in chalcopyrite ores. Dokl.Akad.149, 675-676Google Scholar
  11. Katsikatsos G, Migiros G, Triantafyllis M, Mettos A (1986) Geological structure of Internal Hellinides. IGME/Geol. Geoph. Res. Special Issue, 191-212Google Scholar
  12. Kelepertsis A (1993) Hydrothermal alteration of basic island-arc volcanic rocks north and south of Mytilini Town, Lesvos Island, Greece. Terra Nova.5, 52-60CrossRefGoogle Scholar
  13. Kelepertsis A, Tziritis E, Kelepertsis E, Leontakianakos G, Pallas K (2009) Hydrogeochemical characteristics and genetic implications of Edipsos thermal springs, north Euboea, Greece. Centr. Eur. J. Geosc. 1(3), 241-250CrossRefGoogle Scholar
  14. Lambrakis N, Stamatis G (2007) Contribution to the study of thermal waters in Greece: chemical patterns and origin of thermal water in the thermal springs of Lesvos. Hydrol. Process 22, 171-180CrossRefGoogle Scholar
  15. Le Pichon X, Angelier T (1981) The Aegean Sea. Philos. Trans. R. Soc. Lond. A300, 357-372CrossRefGoogle Scholar
  16. Mather D, Porteous N (2001) The geochemistry of Boron and its isotopes in groundwater from marine and none marine sandstone aquifers. Appl. Geochem. 16, 821-834CrossRefGoogle Scholar
  17. Mayanovic R, Anderson A, Bassett W, Chou IM (2007) On the formation and structure of rare earth element complexes in aqueous solutions under hydrothermal conditions with new data on gadolinium aqua and chloro complexes. Chem. Geol. 239, 266-283CrossRefGoogle Scholar
  18. Michelot JL, Dotsika F, Fytikas M (1993) A hydrochemical and isotopic study of thermal waters of Lesbos Island (Greece). Geothermics. 22, 91-99CrossRefGoogle Scholar
  19. Mortlock R, Froelich P, Feely R, Massoth G, Butterfiled D, Lupton J (1993) Silica and germanium in Pacific Ocean hydrothermal vents and plumes. Earth. Plan. Scien. Letters. 119, 365-378CrossRefGoogle Scholar
  20. Neal C (2005) La, Ce, Pr and Y in waters in an upland acidic and acid sensitive environment, mid-Wales. Hydr. Earth. S. Sc. 9, 645-656CrossRefGoogle Scholar
  21. Papastamataki A, Katsikatsos G (1969) The thermal springs of Polichnitos-Lesbos. Unpublished IGME report (in Greek)Google Scholar
  22. Pe-Piper G (1980) Geochemistry of Miocene Shoshonites, Lesbos, Greece. Contrib. Min. Petrol. 72, 387-396CrossRefGoogle Scholar
  23. Percival TJ, Radtke AS (1994) Sedimentary rock-hosted gold mineralization in the Alsar district, Skopje. Can. Mineral. 32,649-665Google Scholar
  24. Peter J, Viraraghavan T (2005) Thallium: A review of public health and environment concerns. Env. Int. 31, 493-591CrossRefGoogle Scholar
  25. Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 17, 517-568CrossRefGoogle Scholar
  26. Valentino GM, Stanzione D (2003) Source processes of the thermal waters from the Phlegrean Fields (Naples, Italy) by means of the study of selected minor and trace elements distribution. Chem. Geol. 194,245-274CrossRefGoogle Scholar
  27. Vamvoukakis K (2009) Epithermal mineralization Au-Ag at Lesvos Island. PhD Thesis. p418Google Scholar
  28. Varnavas SP, Cronan DS (1988) Arsenic, Antimony and Bismuth in sediments and waters from the Santorini hydrothermal field, Greece. Chem. Geol. 67, 295-305CrossRefGoogle Scholar
  29. Vink BW (1993) The behaviour of thallium in the (sub) surface environment in terms of pH and Eh. Chem. Geol. 109, 119-123CrossRefGoogle Scholar
  30. Welch AH, Stollenwerk KG (2003) Arsenic in Ground Water: Geochemistry and Occurrence: Boston. Kluwer Academic Publishers, 475 pGoogle Scholar
  31. Xiao T, Guha J, Boyle D, Liu CQ, Zheng B, Wilson G, Rouleau A, Chen J (2004) Naturally occurring thallium: A hidden geoenvironmental health hazard. Envir. Internat. 30, 501-507CrossRefGoogle Scholar
  32. Zitko V (1975) Toxicity and pollution potential of thallium. Sci. Total. Environ. 4,185-192CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • E. Tziritis
    • 1
  • A. Kelepertzis
    • 1
  1. 1.Faculty of Geology & GeoenvironmentNational & Kapodistrian University of AthensIlissia, AthensGreece

Personalised recommendations