Augmenting Heteronanostructure Visualization with Haptic Feedback

  • Michel Abdul-Massih
  • Bedřich Beneš
  • Tong Zhang
  • Christopher Platzer
  • William Leavenworth
  • Huilong Zhuo
  • Edwin R. García
  • Zhiwen Liang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6939)

Abstract

We address the need of researchers in nanotechnology who desire an increased level of perceptualization of their simulation data by adding haptic feedback to existing multidimensional volumetric visualizations. Our approach uses volumetric data from simulation of an LED heteronanostructure, and it translates projected values of amplitude of an electromagnetic field into a force that is delivered interactively to the user. The user can vary the types of forces, and they are then applied to a haptic feedback device with three degrees of freedom. We describe our methods to simulate the heteronanostructure, volume rendering, and generating adequate forces for feedback. A thirty one subject study was performed. Users were asked to identify key areas of the heteronanostructure with only visualization, and then with visualization and the haptic device. Our results favor the usage of haptic devices as a complement to 3-D visualizations of the volumetric data. Test subjects responded that haptic feedback helped them to understand the data. Also, the shape of the structure was better recognized with the use of visuohaptic feedback than with visualization only.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avila, R.S., Sobierajski, L.M.: A haptic interaction method for volume visualization. In: Proceedings of the 7th Conference on Visualization 1996, pp. 197–204 (1996)Google Scholar
  2. 2.
    Salisbury, K., Conti, F., Barbagli, F.: Haptic rendering: Introductory concepts (2004)Google Scholar
  3. 3.
    Colgate, J.E., Brown, J.M.: Factors affecting the z-width of a haptic display. In: IEEE Conference on Robotics and Automation, pp. 3205–3210 (1994)Google Scholar
  4. 4.
    Gregory, A., Mascarenhas, A., Ehmann, S., Lin, M., Manocha, D.: Six degree-of-freedom haptic display of polygonal models. In: Proceedings of the Conference on Visualization, VIS 2000, pp. 139–146. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  5. 5.
    Ogawa, Y., Fujishiro, I., Suzuki, Y., Takeshima, Y.: Designing 6dof haptic transfer functions for effective exploration of 3d diffusion tensor fields. In: Proceedings of the World Haptics 2009 - Third Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 470–475. IEEE Computer Society, Washington, DC (2009)CrossRefGoogle Scholar
  6. 6.
    Mcneely, W.A., Puterbaugh, K.D., Troy, J.J.: Six degree-of-freedom haptic rendering using voxel sampling. In: Proc. of ACM SIGGRAPH, pp. 401–408 (1999)Google Scholar
  7. 7.
    Pacoret, C., Bowman, R., Gibson, G., Haliyo, S., Carberry, D., Bergander, A., Rgnier, S., Padgett, M.: Touching the microworld with force-feedback optical tweezers. Opt. Express 17, 10259–10264 (2009)CrossRefGoogle Scholar
  8. 8.
    Marliere, S., Urma, D., Florens, J.L., Marchi, F.: Multi-sensorial interaction with a nano-scale phenomenon: the force curve. Computing Research Repository (2010)Google Scholar
  9. 9.
    Sitti, M., Aruk, B., Shintani, H., Hashimoto, H.: Scaled teleoperation system for nano-scale interaction and manipulation. Advanced Robotics 17, 275–291 (2003)CrossRefGoogle Scholar
  10. 10.
    Sitti, M., Hashimoto, H.: Teleoperated touch feedback from the surfaces at the nanoscale: modeling and experiments. IEEE-ASME Transactions on Mechatronics 8, 287–298 (2003)CrossRefGoogle Scholar
  11. 11.
    Kim, L., Kyrikou, A., Desbrun, M., Sukhatme, G.: An implicit-based haptic rendering technique. In: Proceeedings of the IEEE/RSJ International Conference on Intelligent Robots (2002)Google Scholar
  12. 12.
    Durbeck, L.J.K., Macias, N.J., Weinstein, D.M., Johnson, C.R., Hollerbach, J.M.: Scirun haptic display for scientific visualization. In: Proc. Third Phantom User’s Group Workshop, MIT RLE Report TR624, Massachusetts Institute of Technology, MIT (1998)Google Scholar
  13. 13.
    Ikits, M., Brederson, J.D., Hansen, C.D., Johnson, C.R.: A constraint-based technique for haptic volume exploration. In: Proceedings of IEEE Visualization 2003, pp. 263–269 (2003)Google Scholar
  14. 14.
    Liang, Z.: Simulation and Design of (In,Ga)N-Based Light Emitting Diodes. PhD thesis, Purdue University (2011)Google Scholar
  15. 15.
    Chai3D: WWW, http://www.chai3d.org/ (last accessed, May 2011)

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Michel Abdul-Massih
    • 1
  • Bedřich Beneš
    • 1
  • Tong Zhang
    • 1
  • Christopher Platzer
    • 1
  • William Leavenworth
    • 1
  • Huilong Zhuo
    • 1
  • Edwin R. García
    • 1
  • Zhiwen Liang
    • 1
  1. 1.Purdue UniversityUSA

Personalised recommendations