Near-Optimal Time Function for Secure Dynamic Visual Cryptography

  • V. Petrauskiene
  • J. Ragulskiene
  • E. Sakyte
  • M. Ragulskis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6939)


The strategy for the selection of an optimal time function for dynamic visual cryptography is presented in this paper. Evolutionary algorithms are used to obtain the symmetric piece-wise uniform density function. The fitness function of each chromosome is associated with the derivative of the standard of the time-averaged moiré image. The reconstructed near-optimal time function represents the smallest interval of amplitudes where an interpretable moiré pattern is generated in the time-averaged image. Such time functions can be effectively exploited in computational implementation of secure dynamic visual cryptography.


Evolutionary Algorithm Time Function Image Encryption Secret Image Shadow Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Naor, M., Shamir, A.: Visual cryptography. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  2. 2.
    Shyu, S.: Efficient visual secret sharing scheme for color images. Pattern Recognit. 39, 866–880 (2006)CrossRefzbMATHGoogle Scholar
  3. 3.
    Zhou, Z., Arce, G., Crescenzo, D.: Halftone visual cryptography. IEEE Trans. Image Process. 15, 2441–2453 (2006)CrossRefGoogle Scholar
  4. 4.
    Shyu, S.: Image encryption by random grids. Pattern Recognit. 40, 1014–1031 (2007)CrossRefzbMATHGoogle Scholar
  5. 5.
    Hu, C., Tseng, W.: Cheating prevention in visual cryptography. IEEE Trans. Image Process 16, 36–45 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cimato, S., De Prisco, R., De Santis, A.: Colored visual cryptography without color darkening. Theor. Comput. Sci. 374, 261–276 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Yang, C.N., Chen, T.S.: Extended visual secret sharing schemes: improving the shadow image quality. Int. J. Pattern Recognit. Artificial Intelligence 21, 879–898 (2007)CrossRefGoogle Scholar
  8. 8.
    Kobayashi, A.S.: Handbook on Experimental Mechanics, 2nd edn. SEM, Bethel (1993)Google Scholar
  9. 9.
    Patorski, K., Kujawinska, M.: Handbook of the moiré fringe technique. Elsevier, Amsterdam (1993)Google Scholar
  10. 10.
    Post, D., Han, B., Ifju, P.: High sensitivity moiré: experimental analysis for mechanics and materials. Springer, Berlin (1997)Google Scholar
  11. 11.
    Dai, F.L., Wang, Z.Y.: Geometric micron moiré. Opt. Laser Eng. 31, 191–208 (1999)CrossRefGoogle Scholar
  12. 12.
    Desmedt, Y., Van Le, T.: Moiré cryptography. In: 7th ACM Conf. on Computer and Communications Security, pp. 116–124 (2000)Google Scholar
  13. 13.
    Ragulskis, M., Aleksa, A.: Image hiding based on time-averaging moiré. Optics Communications 282, 2752–2759 (2009)CrossRefGoogle Scholar
  14. 14.
    Ragulskis, M., Aleksa, A., Navickas, Z.: Image hiding based on time-averaged fringes produced by non-harmonic oscillations. J. Opt. A: Pure Appl. Opt. 11, 125411 (2009)CrossRefGoogle Scholar
  15. 15.
    Ragulskis, M., Navickas, Z.: Hash functions construction based on time average moiré. J. Discrete and Continuous Dynamical Systems-Series B 8, 1007–1020 (2007)CrossRefzbMATHGoogle Scholar
  16. 16.
    Ragulskis, M., Aleksa, A., Maskeliunas, R.: Contrast enhancement of time-averaged fringes based on moving average mapping functions. Optics and Lasers in Engineering 47, 768–773 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • V. Petrauskiene
    • 1
  • J. Ragulskiene
    • 2
  • E. Sakyte
    • 1
  • M. Ragulskis
    • 1
  1. 1.Research Group for Mathematical and Numerical Analysis of Dynamical SystemsKaunas University of TechnologyKaunasLithuania
  2. 2.Kauno KolegijaKaunasLithuania

Personalised recommendations