A Virtual Excavation: Combining 3D Immersive Virtual Reality and Geophysical Surveying

  • Albert Yu-Min Lin
  • Alexandre Novo
  • Philip P. Weber
  • Gianfranco Morelli
  • Dean Goodman
  • Jürgen P. Schulze
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6939)

Abstract

The projection of multi-layered remote sensing and geophysical survey data into a 3D immersive virtual reality environment for non-invasive archaeological exploration is described. Topography, ultra-high resolution satellite imagery, magnetic, electromagnetic, and ground penetrating radar surveys of an archaeological site are visualized as a single data set within the six-sided (including floor) virtual reality (VR) room known as the StarCAVE. These independent data sets are combined in 3D space through their geospatial orientation to facilitate the detection of physical anomalies from signatures observed across various forms of surface and subsurface surveys. The data types are highly variant in nature and scale, ranging from 2D imagery to massive scale point clouds. As a reference base-layer a site elevation map was produced and used as to normalize and correlate the various forms of collected data within a single volume. Projecting this volume within the StarCAVE facilitates immersive and collaborative exploration of the virtual site at actual scale of the physical site.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Watters, M.S.: Gpr: a tool for archaeological management. In: Proceedings of the Tenth International Conference on Ground Penetrating Radar, GPR 2004, pp. 811–815 (2004)Google Scholar
  2. 2.
    Becker, H.: From nanotesla to picotesla-a new window for magnetic prospecting in archaeology. Archaeological Prospection 2, 217–228 (1995)Google Scholar
  3. 3.
    Aitken, M.J.: Magnetic prospecting. i. the water newton survey. Archaeometry 1, 24–26 (1958)CrossRefGoogle Scholar
  4. 4.
    Frohlich, B., Lancaster, W.: Electromagnetic surveying in current middle eastern archaeology: Application and evaluation. Geophysics 51, 1414–1425 (1986)CrossRefGoogle Scholar
  5. 5.
    Tabbagh, A.: Applications and advantages of the slingram electromagnetic method for archaeological prospecting. Geophysics 51, 576–584 (1986)CrossRefGoogle Scholar
  6. 6.
    Abu Zeid, N., Balkov, E., Chemyakina, M., Manstein, A., Manstein, Y., Morelli, G., Santarato, G.: Multi-frequency electromagnetic sounding tool EMS. Archaeological discoveries. Case stories. In: EGS - AGU - EUG Joint Assembly, Nice, France, vol. 5 (2003)Google Scholar
  7. 7.
    Novo, A., Grasmueck, M., Viggiano, D., Lorenzo, H.: 3D GPR in archaeology: What can be gained from dense data acquisition and processing. In: Twelfth International Conference on Ground Penetrating Radar (2008)Google Scholar
  8. 8.
    Goodman, D., Nishimura, Y., Rogers, J.: GPR time slices in archaeological prospection. Archaeological prospection 2, 85–89 (1995)Google Scholar
  9. 9.
    Davis, J., Annan, A.: Ground penetrating radar for high-resolution mapping of soil and rock stratigraphy. Geophysical Prospecting 37, 531–551 (1989)CrossRefGoogle Scholar
  10. 10.
    Watters, M.S.: Geovisualization: an example from the catholme ceremonial complex. Archaeological Prospection 13, 282–290 (2006)CrossRefGoogle Scholar
  11. 11.
    Nuzzo, L., Leucci, G., Negri, S., Carrozzo, M., Quarta, T.: Application of 3d visualization techniques in the analysis of gpr data for archaeology. Annals Of Geophysics 45, 321–337 (2009)Google Scholar
  12. 12.
    Grasmueck, M., Weger, R., Horstmeyer, H.: Full-resolution 3d gpr imaging. Geophysics 70, K12–K19 (2005)CrossRefGoogle Scholar
  13. 13.
    DeFanti, T.A., Dawe, G., Sandin, D.J., Schulze, J.P., Otto, P., Girado, J., Kuester, F., Smarr, L., Rao, R.: The starcave, a third-generation cave and virtual reality optiportal. Future Generation Computer Systems 25, 169–178 (2009)CrossRefGoogle Scholar
  14. 14.
    GeoScience, M.: Windows based acquisition and visualization software (2010), http://www.idswater.com/water/us/mala_geoscience/data_acquisition_software/85_0/g_supplier_5.html
  15. 15.
    Instruments, A.: Easy 3D - GPR Visualization Software (2010), http://www.aegis-instruments.com/products/brochures/easy-3d-gpr.html
  16. 16.
    Halliburton: GeoProbe Volume Interpretation SoftwareGoogle Scholar
  17. 17.
    Ropinski, T., Steinicke, F., Hinrichs, K.: Visual exploration of seismic volume datasets. In: Journal Proceedings of the 14th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG 2006), vol. 14 (2006)Google Scholar
  18. 18.
    Chopra, P., Meyer, J., Fernandez, A.: Immersive volume visualization of seismic simulations: A case study of techniques invented and lessons learned. IEEE Visualization (2002)Google Scholar
  19. 19.
    Winkler, C., Bosquet, F., Cavin, X., Paul, J.: Design and implementation of an immersive geoscience toolkit. IEEE Visualization (1999)Google Scholar
  20. 20.
    Froehlich, B., Barrass, S., Zehner, B., Plate, J., Goebel, M.: Exploring geo-scientific data in virtual environments. In: Proceedings of the Conference on Visualization 1999. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  21. 21.
    LaFayette, C., Parke, F., Pierce, C., Nakamura, T., Simpson, L.: Atta texana leafcutting ant colony: a view underground. In: ACM SIGGRAPH 2008 talks. ACM, New York (2008)Google Scholar
  22. 22.
    Billen, M., Kreylos, O., Hamann, B., Jadamec, M., Kellogg, L., Staadt, O.D.: A geoscience perspective on immersive 3d gridded data visualization, vol. 34. Computers & Geosciences Google Scholar
  23. 23.
    Leckebusch, J.: Ground-penetrating radar: a modern three-dimensional prospection method. Archaeological Prospection 10, 213–240 (2003)CrossRefGoogle Scholar
  24. 24.
    Linford, N.: From hypocaust to hyperbola: ground-penetrating radar surveys over mainly Roman remains in the UK. Archaeological Prospection 11, 237–246 (2004)CrossRefGoogle Scholar
  25. 25.
    OpenSceneGraph: Scenegraph based graphics library (2004), http://www.openscenegraph.org
  26. 26.
    Orthmann, J., Keller, M., Kolb, A.: Integrating GPGPU Functionality into Scene Graphs. Vision Modeling Visualization (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Albert Yu-Min Lin
    • 1
  • Alexandre Novo
    • 2
  • Philip P. Weber
    • 1
  • Gianfranco Morelli
    • 2
  • Dean Goodman
    • 3
  • Jürgen P. Schulze
    • 1
  1. 1.California Institute for Telecommunications and Information TechnologyUniversity of CaliforniaLa JollaUSA
  2. 2.Geostudi AstierLivornoItaly
  3. 3.Geophysical Archaeometry LaboratoryWoodland HillsUSA

Personalised recommendations