Advertisement

Hybrid Face Recognition Based on Real-Time Multi-camera Stereo-Matching

  • J. Hensler
  • K. Denker
  • M. Franz
  • G. Umlauf
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6939)

Abstract

Multi-camera systems and GPU-based stereo-matching methods allow for a real-time 3d reconstruction of faces. We use the data generated by such a 3d reconstruction for a hybrid face recognition system based on color, accuracy, and depth information. This system is structured in two subsequent phases: geometry-based data preparation and face recognition using wavelets and the AdaBoost algorithm. It requires only one reference image per person. On a data base of 500 recordings, our system achieved detection rates ranging from 95% to 97% with a false detection rate of 2% to 3%. The computation of the whole process takes around 1.1 seconds.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Denker, K., Umlauf, G.: Accurate real-time multi-camera stereo-matching on the gpu for 3d reconstruction. Journal of WSCG 19, 9–16 (2011)Google Scholar
  2. 2.
    Pan, G., Han, S., Wu, Z., Wang, Y.: 3D face recognition using mapped depth images. In: IEEE Conf. on Computer Vision and Pattern Recognition, pp. 175–181 (2005)Google Scholar
  3. 3.
    Turk, M., Pentland, A.: Eigenfaces for recognition. Cognitive Neuroscience 3, 71–86 (1991)CrossRefGoogle Scholar
  4. 4.
    Blanz, V., Vetter, T.: A morphable model for the synthesis of 3d faces. In: SIGGRAPH 1999, pp. 187–194 (1999)Google Scholar
  5. 5.
    Blanz, V., Romdhani, S.: Face identification across different poses and illuminations with a 3d morphable model. In: Int’l. Conf. on Automatic Face and Gesture Recognition, pp. 202–2007 (2002)Google Scholar
  6. 6.
    Weyrauch, B., Huang, J., Heisele, B., Blanz, V.: Component-based face recognition with 3d morphable models. In: Workshop on Face Processing in Video, pp. 1–5 (2003)Google Scholar
  7. 7.
    Lee, Y., Song, H., Yang, U., Shin, H., Sohn, K.: Local feature based 3D face recognition. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 909–918. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Lee, J., Kuo, C., Hus, C.: 3d face recognition system based on feature analysis and support vector machine. In: IEEE TENCON 2004, pp. 144–147 (2004)Google Scholar
  9. 9.
    Cook, J., Ch, V., Sridharan, S., Fookes, C.: Face recognition from 3d data using iterative closest point algorithm and Gaussian mixture models. In: 2nd Int’l. Symp. 3D Data Processing, Visualization, and Transmission, pp. 502–509 (2004)Google Scholar
  10. 10.
    Wang, J., Oliveira, M.: A hole-filling strategy for reconstruction of smooth surfaces in range images. In: SIBGRAPI 2003, pp. 11–18 (2003)Google Scholar
  11. 11.
    Besl, P., McKay, N.: A method for registration of 3-D shapes. IEEE Trans. on Pattern Analysis and Machine Intelligence, 239–256 (1992)Google Scholar
  12. 12.
    Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: 3dim, p. 145. IEEE Computer Society, Los Alamitos (2001)Google Scholar
  13. 13.
    Freedman, D., Diaconis, P.: On the histogram as a density estimator: L2 theory. Probability Theory and Related Fields 57, 453–476 (1981)zbMATHGoogle Scholar
  14. 14.
    Lamard, M., Cazuguel, G., Quellec, G., Bekri, L., Roux, C., Cochener, B.: Content based image retrieval based on wavelet transform coefficients distribution. In: 29th IEEE Conf. of the Engineering in Medicine and Biology Society, pp. 4532–4535 (2007)Google Scholar
  15. 15.
    Varanasi, M., Aazhang, B.: Parametric generalized Gaussian density estimation. J. of the Acoustical Society of America 86, 1404 (1989)CrossRefGoogle Scholar
  16. 16.
    Do, M., Vetterli, M.: Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance. IEEE Trans. on Image Processing 11, 146–158 (2002)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kullback, S., Leibler, R.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hensler, J., Blaich, M., Bittel, O.: Improved door detection fusing camera and laser rangefinder data with AdaBoosting. In: 3rd Int.’l Conf. on Agents and Artificial Intelligence, pp. 39–48 (2011)Google Scholar
  19. 19.
    Schapire, R.: A brief introduction to boosting. In: International Joint Conference on Artificial Intelligence, vol. 16, pp. 1401–1406 (1999)Google Scholar
  20. 20.
    Bowyer, K., Chang, K., Flynn, P.: A survey of approaches and challenges in 3d and multi-modal 3d+2d face recognition. Computer Vision and Image Understanding 101, 1–15 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • J. Hensler
    • 1
  • K. Denker
    • 1
  • M. Franz
    • 1
  • G. Umlauf
    • 1
  1. 1.University of Applied SciencesConstanceGermany

Personalised recommendations