Advertisement

BiCluster Viewer: A Visualization Tool for Analyzing Gene Expression Data

  • Julian Heinrich
  • Robert Seifert
  • Michael Burch
  • Daniel Weiskopf
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6938)

Abstract

Exploring data sets by applying biclustering algorithms was first introduced in gene expression analysis. While the generated biclustered data grows with increasing rates due to the technological progress in measuring gene expression data, the visualization of the computed biclusters still remains an open issue. For efficiently analyzing the vast amount of gene expression data, we propose an algorithm to generate and layout biclusters with a minimal number of row and column duplications on the one hand and a visualization tool for interactively exploring the uncovered biclusters on the other hand. In this paper, we illustrate how the BiCluster Viewer may be applied to highlight detected biclusters generated from the original data set by using heatmaps and parallel coordinate plots. Many interactive features are provided such as ordering functions, color codings, zooming, details-on-demand, and the like. We illustrate the usefulness of our tool in a case study where yeast data is analyzed. Furthermore, we conducted a small user study with 4 participants to demonstrate that researchers are able to learn und use our tool to find insights in gene expression data very rapidly.

Keywords

Gene Expression Data Visualization Tool Interactive Feature Analyze Gene Expression Data Option Show 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shneiderman, B.: The eyes have it: A task by data type taxonomy for information visualizations. In: Proceedings of the IEEE Symposium on Visual Languages, pp. 336–343 (1996)Google Scholar
  2. 2.
    Eisen, M., Spellman, P., Brown, P., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences 95, 14863–14868 (1998)CrossRefGoogle Scholar
  3. 3.
    Inselberg, A., Dimsdale, B.: Parallel coordinates: A tool for visualizing multi-dimensional geometry. In: Proceedings of IEEE Visualization, pp. 361–378 (1990)Google Scholar
  4. 4.
    Grothaus, G., Mufti, A., Murali, T.: Automatic layout and visualization of biclusters. Algorithms for Molecular Biology 1 (2006)Google Scholar
  5. 5.
    Santamaria, R., Theron, R., Quintales, L.: A visual analytics approach for understanding biclustering results from microarray data. Bioinformatics 9 (2008)Google Scholar
  6. 6.
    Cheng, K., Law, N., Siu, W., Liew, A.C.: Biclusters visualization and detection using parallel coordinates plots. In: Proceedings of the International Symposium on Computational Models for Life Sciences (2007)Google Scholar
  7. 7.
    Cheng, K., Law, N., Siu, W., Lau, T.: BiVisu: Software tool for bicluster detection and visualization. BMC Bioinformatics 23, 2342–2344 (2007)CrossRefGoogle Scholar
  8. 8.
    Cheng, K.O., Law, N.F., Siu, W.C., Liew, A.: Identification of coherent patterns in gene expression data using an efficient biclustering algorithm and parallel coordinate visualization. BMC Bioinformatics 9, 210–238 (2008)CrossRefGoogle Scholar
  9. 9.
    Rosenholtz, R., Li, Y., Mansfield, J., Jin, Z.: Feature Congestion: A Measure of Display Clutter. In: Proceedings of SIGCHI Conference on Human Factors in Computing Systems, pp. 761–770. ACM Press, New York (2005)Google Scholar
  10. 10.
    Dietzsch, J., Heinrich, J., Nieselt, K., Bartz, D.: SpRay: A visual analytics approach for gene expression data. In: IEEE Symposium on Visual Analytics Science and Technology, pp. 179–186 (2009)Google Scholar
  11. 11.
    Kaiser, S., Santamaria, R., Theorn, R., Quintales, L., Leisch, F.: Bicluster algorithms (2009), http://cran.r-project.org/web/packages/biclust/biclust.pdf
  12. 12.
    R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2011) ISBN 3-900051-07-0Google Scholar
  13. 13.
    Barkow, S., Bleuler, S., Zitzler, E., Prelic, A., Frick, D.: BicAT: Biclustering analysis toolbox, ETH Zürich (2010), http://www.tik.ethz.ch/sop/bicat/?page=bicat.php
  14. 14.
    Luscher, A.: ExpressionView (2010), http://www2.unil.ch/cbg/index.php?title=ExpressionView
  15. 15.
    Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proceedings of International Conference on Intellegent Systems for Molecular Biology, pp. 93–103 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Julian Heinrich
    • 1
  • Robert Seifert
    • 1
  • Michael Burch
    • 1
  • Daniel Weiskopf
    • 1
  1. 1.VISUSUniversity of StuttgartGermany

Personalised recommendations