Denoising Time-Of-Flight Data with Adaptive Total Variation

  • Frank Lenzen
  • Henrik Schäfer
  • Christoph Garbe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6938)


For denoising depth maps from time-of-flight (ToF) cameras we propose an adaptive total variation based approach of first and second order. This approach allows us to take into account the geometric properties of the depth data, such as edges and slopes. To steer adaptivity we utilize a special kind of structure tensor based on both the amplitude and phase of the recorded ToF signal. A comparison to state-of-the-art denoising methods shows the advantages of our approach.


Time-of-flight Denoising Adaptive Total Variation Higher Order Regularization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aurich, V., Weule, J.: Non-linear Gaussian filters performing edge preserving diffusion. In: Proceed. 17. DAGM-Symposium (1995)Google Scholar
  2. 2.
    Bredies, K., Kunisch, K., Pock, T.: Total Generalized Variation. SIAM J. Imaging Sciences 3(3), 492–526 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chambolle, A., Lions, P.-L.: Image recovery via total variation minimization and related problems. Numerische Mathematik 76, 167–188 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chan, D., Buisman, H., Theobalt, C., Thrun, S.: A noise-aware filter for real-time depth upsampling. In: Proc. of ECCV Workshop on Multi-camera and Multi-modal Sensor Fusion Algorithms and Applications, pp. 1–12 (2008)Google Scholar
  6. 6.
    Edeler, T., Ohliger, K., Hussmann, S., Mertins, A.: Time-of-flight depth image denoising using prior noise information. In: Proceedings ICSP, pp. 119–122 (2010)Google Scholar
  7. 7.
    Frank, M., Plaue, M., Hamprecht, F.A.: Denoising of continuous-wave time-of-flight depth images using confidence measures. Optical Engineering 48 (2009)Google Scholar
  8. 8.
    Frank, M., Plaue, M., Rapp, K., Köthe, U., Jähne, Hamprecht, F.A.: Theoretical and experimental error analysis of continuous-wave time-of-flight range cameras. Optical Engineering 48(1), 13602 (2009)CrossRefGoogle Scholar
  9. 9.
    Grasmair, M., Lenzen, F.: Anisotropic Total Variation Filtering. Appl. Math. Optim. 62(3), 323–339 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Schöner, H., Moser, B., Dorrington, A.A., Payne, A.D., Cree, M.J., Heise, B., Bauer, F.: A clustering based denoising technique for range images of time of flight cameras. In: CIMCA/IAWTIC/ISE 2008, pp. 999–1004 (2008)Google Scholar
  11. 11.
    Jovanov, L., Pizurica, A., Philips, W.: Fuzzy logic-based approach to wavelet denoising of 3D images produced by time-of-flight cameras. Opt. Express 18, 22651–22676 (2010)CrossRefGoogle Scholar
  12. 12.
    Kindermann, S., Osher, S., Jones, P.W.: Deblurring and denoising of images by nonlocal functionals. Multiscale Model. Simul. 4(4), 1091–1115 (2005) (electronic)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Köthe, U.: Edge and junction detection with an improved structure tensor. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 25–32. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Lenzen, F., Becker, F., Lellmann, J., Petra, S., Schnörr, C.: Variational image denoising with constraint sets. In: Proceedings SSVM (in press, 2011)Google Scholar
  15. 15.
    Moser, B., Bauer, F., Elbau, P., Heise, B., Schöner, H.: Denoising techniques for raw 3D data of ToF cameras based on clustering and wavelets. In: Proc. SPIE, vol. 6805 (2008)Google Scholar
  16. 16.
    Paris, S., Durand, F.: A fast approximation of the bilateral filter using a signal processing approach. Technical report, MIT - CSAIL (2006)Google Scholar
  17. 17.
    Plaue, M.: Analysis of the PMD imaging system. Technical report, Interdisciplinary Center for Scientific Computing, University of Heidelberg (2006)Google Scholar
  18. 18.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1-4), 259–268 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Scherzer, O.: Denoising with higher order derivatives of bounded variation and an application to parameter estimation. Computing 60, 1–27 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Schmidt, M., Jähne, B.: A physical model of time-of-flight 3D imaging systems, including suppression of ambient light. In: Kolb, A., Koch, R. (eds.) Dyn3D 2009. LNCS, vol. 5742, pp. 1–15. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Setzer, S., Steidl, G., Teuber, T.: Infimal convolution regularizations with discrete l1-type functionals. Comm. Math. Sci. 9, 797–872 (2011)CrossRefzbMATHGoogle Scholar
  22. 22.
    Steidl, G., Teuber, T.: Anisotropic smoothing using double orientations. In: Proceedings SSVM 2009, pp. 477–489 (2009)Google Scholar
  23. 23.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of the Sixth International Conference on Computer Vision (ICCV 1998), p. 839 (1998)Google Scholar
  24. 24.
    Weiss, B.: Fast median and bilateral filtering. ACM Trans. Graph. 25(3), 519–526 (2006); Proceedings of ACM SIGGRAPH 2006Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Frank Lenzen
    • 1
    • 2
  • Henrik Schäfer
    • 1
    • 2
  • Christoph Garbe
    • 1
    • 2
  1. 1.Heidelberg Collaboratory for Image ProcessingHeidelberg UniversityGermany
  2. 2.Intel Visual Computing InstituteSaarland UniversityGermany

Personalised recommendations