Advertisement

A Situation-Aware Computational Trust Model for Selecting Partners

  • Joana Urbano
  • Ana Paula Rocha
  • Eugénio Oliveira
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6910)

Abstract

Trust estimation is a fundamental process in several multi-agent systems domains, from social networks to electronic business scenarios. However, the majority of current computational trust systems is still too simplistic and is not situation-aware, jeopardizing the accuracy of the predicted trustworthiness values of agents. In this paper, we address the inclusion of context in the trust management process. We first overview recently proposed situation-aware trust models, all based on the predefinition of similarity measures between situations. Then, we present our computational trust model, and we focus on Contextual Fitness, a component of the model that adds a contextual dimensional to existing trust aggregation engines. This is a dynamic and incremental technique that extracts tendencies of behavior from the agents in evaluation and that does not imply the predefinition of similarity measures between contexts. Finally, we evaluate our trust model and compare it with other trust approaches in an agent-based, open market trading simulation scenario. The results obtained show that our dynamic and incremental technique outperforms the other approaches in open and dynamic environments. By analyzing examples derived from the experiments, we show why our technique get better results than situation-aware trust models that are based on predefined similarity measures.

Keywords

computational trust systems dynamics of trust situation-aware trust multi-agent systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sabater, J., Paolucci, M.: On Representation and Aggregation of Social Evaluations, in Computational Trust and Reputation Models. Int. J. Approx. Reasoning (2007)Google Scholar
  2. 2.
    Tavakolifard, M.: Situation-aware Trust Management, pp. 413–416 (2009)Google Scholar
  3. 3.
    Fabregues, A., Madrenas-Ciurana, J.: SRM: a tool for supplier performance. In: AAMAS 2009, pp. 1375–1376 (2009)Google Scholar
  4. 4.
    Hermoso, R., Billhardt, H., Ossowski, S.: Dynamic evolution of role taxonomies through multidimensional clustering in multiagent organizations. In: Yang, J.-J., Yokoo, M., Ito, T., Jin, Z., Scerri, P. (eds.) PRIMA 2009. LNCS, vol. 5925, pp. 587–594. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Rehak, M., Gregor, M., Pechoucek, M.: Multidimensional context representations for situational trust. In: DIS 2006: Proceedings of IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence and Its Applications, pp. 315–320, 383–388 (2006)Google Scholar
  6. 6.
    Nguyen, C., Camp, O.: Using Context Information to Improve Computation of Trust in Ad Hoc Networks. In: 2008 IEEE International Conference on Wireless & Mobile Computing, Networking & Communication (2008)Google Scholar
  7. 7.
    Neisse, R., Wegdam, M., van Sinderen, M., Lenzini, G.: Trust management model and architecture for context-aware service platforms. In: Chung, S. (ed.) OTM 2007, Part II. LNCS, vol. 4804, pp. 1803–1820. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Stolle, D.: In Trust in Society. In: Cook, K.S. (ed.) Russell Sage Foundation, pp. 202–244 (2001)Google Scholar
  9. 9.
    Macy, M.W., Sato, Y.: Trust, Cooperation, and Market Formation in the U.S. and Japan. Proceedings of the National Academy of Sciences of the United States of America 99(10)(suppl. 3) , 7214–7220 (2002)CrossRefGoogle Scholar
  10. 10.
    Marsh, S.P.: Formalising Trust as a Computational Concept. PhD Thesis, University of Stirling (1994)Google Scholar
  11. 11.
    Dasgupta, P.: Trust as a Commodity. In: Gambeta, D. (ed.) Making and Breaking Cooperative Relations, Basil Blackwell (1990)Google Scholar
  12. 12.
    Dimitrakos, T.: System Models, e-Risk and e-Trust. Towards Bridging the Gap? In: Towards the E-Society: E-Business, E-Commerce, and E-Government, Kluwer, Dordrecht (2001)Google Scholar
  13. 13.
    Christianson, B., Harbison, W.S.: Why isn’t trust transitive? In: Proceedings of the International Workshop on Security Protocols, London, UK, pp. 171–176 (1997)Google Scholar
  14. 14.
    Tavakolifard, M., Herrmann, P., Ozturk, P.: Analogical trust reasoning. In: Trust Management III, ch. 10, pp. 149–163 (2009)Google Scholar
  15. 15.
    Toivonen, S., Denker, G.: The Impact of Context on the Trustworthiness of Communication: An Ontological Approach. In: Proceedings of the ISWC Workshop on Trust, Security, and Reputation on the Semantic Web (2004)Google Scholar
  16. 16.
    Golbeck, J., Parsia, B., Hendler, J.: Trust networks on the semantic web. In: Klusch, M., Omicini, A., Ossowski, S., Laamanen, H. (eds.) CIA 2003. LNCS (LNAI), vol. 2782, pp. 238–249. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Tavakolifard, M., Knapskog, S.J., Herrmann, P.: Trust transferability among similar contexts. In: 4th ACM Symposium on QoS and Security for Wireless and Mobile Networks, New York, USA, pp. 91–97 (2008)Google Scholar
  18. 18.
    Strang, T., Linnhoff-Popien, C., Frank, K.: CoOL: A context ontology language to enable contextual interoperability. In: Stefani, J.-B., Demeure, I., Zhang, J. (eds.) DAIS 2003. LNCS, vol. 2893, pp. 236–247. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Jeh, G., Widom, J.: SimRank: a measure of structural-context similarity. In: Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 538–543. ACM Press, New York (2002)CrossRefGoogle Scholar
  20. 20.
    Nakatsuji, M., Fujiwara, Y., Tanaka, A., Uchiyama, T., Ishida, T.: Recommendations Over Domain Specific User Graphs. In: 19th European Conference on Artificial Intelligence (ECAI 2010), Lisbon, Portugal (2010)Google Scholar
  21. 21.
    Jung, J.J.: Ontology-based context synchronization for ad hoc social collaborations. Knowledge-Based Systems 21(7), 573–580 (2008)CrossRefGoogle Scholar
  22. 22.
    Rehák, M., Pěchouček, M.: Trust modeling with context representation and generalized identities. In: Klusch, M., Hindriks, K.V., Papazoglou, M.P., Sterling, L. (eds.) CIA 2007. LNCS (LNAI), vol. 4676, pp. 298–312. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Rehák, M., Pěchouček, M., Grill, M., Bartos, K.: Trust-based classifier combination for network anomaly detection. In: Klusch, M., Pěchouček, M., Polleres, A. (eds.) CIA 2008. LNCS (LNAI), vol. 5180, pp. 116–130. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Jonker, C.M., Treur, J.: Formal analysis of models for the dynamics of trust based on experiences. In: Garijo, F.J., Boman, M. (eds.) MAAMAW 1999. LNCS, vol. 1647, pp. 221–231. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  25. 25.
    Urbano, J., Rocha, A.P., Oliveira, E.: Computing confidence values: Does trust dynamics matter? In: Lopes, L.S., Lau, N., Mariano, P., Rocha, L.M. (eds.) EPIA 2009. LNCS, vol. 5816, pp. 520–531. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Danek, A., Urbano, J., Rocha, A.P., Oliveira, E.: Engaging the dynamics of trust in computational trust and reputation systems. In: Jędrzejowicz, P., Nguyen, N.T., Howlet, R.J., Jain, L.C. (eds.) KES-AMSTA 2010. LNCS, vol. 6070, pp. 22–31. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Thurman, R.: Purchasing contracts in the textile industry: how can purchasing contracts decrease subcontracting risks and reclamations in a textile industry company?, Tampereen ammattikorkeakoulu, Thesis Report (2007)Google Scholar
  28. 28.
    Urbano, J., Rocha, A.P., Oliveira, E.: Trust estimation using contextual fitness. In: Jędrzejowicz, P., Nguyen, N.T., Howlet, R.J., Jain, L.C. (eds.) KES-AMSTA 2010. LNCS, vol. 6070, pp. 42–51. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  29. 29.
    Urbano, J., Rocha, A.P., Oliveira, E.: Trustworthiness Tendency Incremental Extraction Using Information Gain. In: IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, wi-iat 2010, vol. 2, pp. 411–414 (2010)Google Scholar
  30. 30.
    Quinlan, J.R.: Induction of Decision Trees. Machine Learning 1(1), 81–106 (1986)Google Scholar
  31. 31.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11(1) (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Joana Urbano
    • 1
  • Ana Paula Rocha
    • 1
  • Eugénio Oliveira
    • 1
  1. 1.LIACC - Laboratory for Artificial Intelligence and Computer ScienceFaculdade de Engenharia da Universidade do Porto - DEI Rua Dr. Roberto FriasPortoPortugal

Personalised recommendations