Estimation and Inference Under Simple Order Restrictions: Hierarchical Bayesian Approach

Chapter
Part of the Use R! book series (USE R)

Abstract

In Chap. 13, we focus on hierarchical Bayesian modeling of dose-response microarray data. The materials presented in the first part of the chapter are closely related to the classification procedure discussed in Chap. 10 in the sense that we fit several order-restricted models for each gene. However, in contrast with Chap. 10, we do not aim to select the model with the best goodness-of-fit but to test the null hypothesis of no dose effect. We formulate order-restricted hierarchical Bayesian model for dose-response data and present gene specific examples to illustrate the estimation procedures. Within the hierarchical Bayesian framework one of the major challenges is related to the question of how to perform Bayesian inference and in particular how to adjust for multiplicity. We discuss the Bayesian variable selection (BVS) method (O‘Hara et al., Bayesian Anal 4(1):85–118, 2009) which we use in order to calculate the posterior probability of a specific model given the data and the model parameters. Following Newton et al. (Biostatistics 5(2):155–176, 2004; Hierarchical mixture models for expression profiles. In Do KM, Muller P, Vannucci M (eds) Bayesian Inference for gene expression and proteomics. Cambridge University Press, Cambridge, 2007), we use the posterior probability of the null model to control for multiplicity using the direct posterior probability method for multiplicity adjustment.

Keywords

Posterior Probability Null Model Order Restriction Hierarchical Bayesian Model Markov Chain Monte Carlo Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Broet, P., Lewin, A., Richardson, S., Dalmasso, C., & Magdelenat, H. (2004). A mixture model based strategy for selecting sets of genes in multiclass response microarray experiments. Bioinformatics, 20(16), 2562–2571.Google Scholar
  2. Chen, M. H., & Kim, S. (2008). The Bayes factor versus other model selection criteria for the selection of constrained models. In H. Hoijtink, I. Klugkist, & P. Boelen (Eds.), Bayesian evaluation of informative hypotheses. Berlin: Springer.Google Scholar
  3. Dellaportas, P., Forster, J. J., & Ntzouras, I. (2002). On Bayesian model and variable selection using MCMC. Statistics and Computing, 12, 27–36.Google Scholar
  4. Dunson, D. B., & Neelon, B. (2003). Bayesian inference on order constrained parameters in generalized linear models. Biometrics, 59, 286–295.Google Scholar
  5. Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004). Bayesian data analysis (2nd ed). Boca Raton: Chapman & Hall/CRC.Google Scholar
  6. George, E. I., & McCulloch, R. E. (1993). Variable selection via gibbs sampling. Journal of the American Statistical Association, 88, 881–889.Google Scholar
  7. Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (1996) Markov chain Monte Carlo in practice. London: Chapman & Hall.Google Scholar
  8. Gelfand, A. E., Smith, A. F. M., & Lee, T.-M. (1992). Bayesian analysis of constrained parameter and truncated data problems. Journal of the American Statistical Association, 87, 523–532.Google Scholar
  9. Hoijtink, H., Klugkist, I., & Boelen, P. (Eds.). (2008). Bayesian evaluation of informative hypotheses. Berlin: Springer.Google Scholar
  10. Kato, B. S., & Hoijtink, H. (2006). A bayesian approach to inequality constrained linear mixed models: estimation and model selection. Statistical Modelling, 6, 231–249.Google Scholar
  11. Klugkist, I., Kato, B., & Hoijtink, H. (2005a) Bayesian model selection using en- compassing priors. Statistica Neerlandica, 59(1), 57–69.Google Scholar
  12. Klugkist, I., Laudy, O., & Hoijtink, H. (2005b) Inequality constrained analysis of variance: A bayesian approach. Pyschological Methods, 10(4), 477–493.Google Scholar
  13. Klugkist, I., & Mulder, J. (2008). Bayesian estimation for inequality constrained analysis of variance. In H. Hoijtink, I. Klugkist, & P. Boelen (Eds.), Bayesian evaluation of informative hypotheses. Berlin: Springer.Google Scholar
  14. Lewin, A., Bochkina, N., & Richardson, S. (2007). Fully bayesian mixture model for differential gene expression: simulations and model checks. Statistical Applications in Genetics and Molecular Biology, 6(1). Article 36.Google Scholar
  15. Myung, J. I., Karabatsos, G., & Iverson, G. J. (2008). A statistician’s view on Bayesuan evaluation of informative hypotheses. In H. Hoijtink, I. Klugkist, , & P. Boelen (Eds.), Bayesian evaluation of informative hypotheses. Berlin: Springer.Google Scholar
  16. Newton, M. A., Noueiry, D., Sarkar, D., & Ahlquist, P. (2004). Detecting differential gene expression with a semi-parametric hierarchical mixture method. Biostatistics, 5(2), 155–176.Google Scholar
  17. Newton, M. A., Wang, P., & Kendziorski, C. (2007). Hierarchical mixture models for expression profiles. In K. M. Do, P. Muller, & M. Vannucci (Eds.), Bayesian Inference for gene expression and proteomics. Cambridge: Cambridge University Press.Google Scholar
  18. Ntzoufras, I. (2002). Gibbs variable selection using BUGS. Journal of Statistical Software, 7(7), 1–19.Google Scholar
  19. Spiegelhalter, D. J., Best, N. G., Carlin, B. P., van der Linde, A. (2002). Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B (Statistical Methodology) 64(4), 583–639.Google Scholar
  20. O‘Hara, R. B., & Sillanpaa, M. J. (2009). A review of Bayesian variable selection methods: what, how and which. Bayesian Analysis, 4(1), 85–118.Google Scholar
  21. Whitney, M., & Ryan, L. (2009). Quantifying dose-response uncertainty using bayesian model averaging. In R. M. Cooke (Ed.), Uncertainty modeling in dose-response. New York: Wiley.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Wolfson Research InstituteDurhamUK
  2. 2.Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BioStat), Center for Statistics (CenStat)Hasselt UniversityDiepenbeekBelgium
  3. 3.Respiratory Epidemiology and Public HealthImperial College LondonLondonUK

Personalised recommendations