Automatic Discovery of Complementary Learning Resources

  • Vicente Arturo Romero Zaldivar
  • Raquel M. Crespo García
  • Daniel Burgos
  • Carlos Delgado Kloos
  • Abelardo Pardo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6964)


Students in a learning experience can be seen as a community working simultaneously (and in some cases collaboratively) in a set of activities. During these working sessions, students carry out numerous actions that affect their learning. But those actions happening outside a class or the Learning Management System cannot be easily observed. This paper presents a technique to widen the observability of these actions. The set of documents browsed by the students in a course was recorded during a period of eight weeks. These documents are then processed and the set with highest similarity with the course notes are selected and recommended back to all the students. The main problem is that this user community visits thousands of documents and only a small percent of them are suitable for recommendation. Using a combination of lexican analysis and information retrieval techniques, a fully automatic procedure to analyze these documents, classify them and select the most relevant ones is presented. The approach has been validated with an empirical study in an undergraduate engineering course with more than one hundred students. The recommended resources were rated as “relevant to the course” by the seven instructors with teaching duties in the course.


Personalisation recommendation adaptive mentoring learning analytics information retrieval 


  1. 1.
    Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005)CrossRefGoogle Scholar
  2. 2.
    Ashraf, B.: Teaching the Google-eyed YouTube generation. Education+ Training 51(5/6), 343–352 (2009)CrossRefGoogle Scholar
  3. 3.
    Auinger, A., Ebner, M., Nedbal, D., Holzinger, A.: Mixing content and endless collaboration–MashUps: Towards future personal learning environments. Universal Access in Human-Computer Interaction. Applications and Services (2009)Google Scholar
  4. 4.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern information retrieval, vol. 463. Addison Wesley/ACM Press (1999)Google Scholar
  5. 5.
    Burke, R.: Hybrid recommender systems: Survey and experiments. User Modeling and UserAdapted Interaction 12(4), 331–370 (2002)CrossRefMATHGoogle Scholar
  6. 6.
    Çelik, T.: Attention.xml Technology Overview (2005)Google Scholar
  7. 7.
    Cunningham, H.: GATE, a general architecture for text engineering. Computers and the Humanities 36(2), 223–254 (2002)CrossRefGoogle Scholar
  8. 8.
    Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: an architecture for development of robust HLT applications. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, vol. 54, pp. 168–175. Association for Computational Linguistics (2002)Google Scholar
  9. 9.
    Drachsler, H., Hummel, H.G.K., Koper, R.: Personal recommender systems for learners in lifelong learning networks: the requirements, techniques and model. International Journal of Learning Technology 3(4), 404–423 (2008)CrossRefGoogle Scholar
  10. 10.
    Govaerts, S., Verbert, K., Klerkx, J., Duval, E.: Visualizing Activities for Self-reflection and Awareness. In: 9th Int. Conf. on Web-based Learning (2010)Google Scholar
  11. 11.
    Lops, P., Gemmis, M., Semeraro, G.: Content-based Recommender Systems: State of the Art and Trends. In: Recommender Systems Handbook, pp. 73–105. Springer, US (2011)CrossRefGoogle Scholar
  12. 12.
    Macfadyen, L.P., Dawson, S.: Mining LMS data to develop an ”early warning system” for educators: A proof of concept. Computers & Education 54(2) (2010)Google Scholar
  13. 13.
    Manouselis, N., Drachsler, H., Vuorikari, R., Hummel, H., Koper, R.: Recommender Systems in Technology Enhanced Learning, ch. 12, pp. 387–415. Springer, Heidelberg (2011)Google Scholar
  14. 14.
    Mazza, R., Dimitrova, V.: CourseVis: A graphical student monitoring tool for supporting instructors in web-based distance courses. International Journal of Human-Computer Studies 65(2), 125–139 (2007)CrossRefGoogle Scholar
  15. 15.
    Mazza, R.: A graphical tool for monitoring the usage of modules in course management systems. In: Lévy, P.P., Le Grand, B., Poulet, F., Soto, M., Darago, L., Toubiana, L., Vibert, J.-F. (eds.) VIEW 2006. LNCS, vol. 4370, pp. 164–172. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Pardo, A., Delgado Kloos, C.: Stepping out of the box. Towards analytics outside the Learning Management System. In: Int. Conf. on Learning Analytics (2011)Google Scholar
  17. 17.
    Resnick, P., Varian, H.: Recommender systems. Communications of the ACM 40(3), 58 (1997)CrossRefGoogle Scholar
  18. 18.
    Romero, C., Ventura, S., Garcia, E.: Data mining in course management systems: Moodle case study and tutorial. Computers & Education 51(1), 368–384 (2008)CrossRefGoogle Scholar
  19. 19.
    Romero Zaldívar, V.A., Burgos, D., Pardo, A.: Meta-rule based Recommender Meta Systems for Educational Applications (2011)Google Scholar
  20. 20.
    Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Information Processing & Management 24(5), 513–523 (1988)CrossRefGoogle Scholar
  21. 21.
    Salton, G., McGill, M.: Introduction to modern information retrieval, vol, vol. 1. McGraw-Hill, New York (1983)MATHGoogle Scholar
  22. 22.
    Schmitz, H.-C., Scheffel, M., Friedrich, M., Jahn, M., Niemann, K., Wolpers, M.: CAMera for PLE. In: Cress, U., Dimitrova, V., Specht, M. (eds.) EC-TEL 2009. LNCS, vol. 5794, pp. 507–520. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Schmitz, H.C., Wolpers, M., Kirschenmann, U., Niemann, K.: Contextualized Attention Metadata, ch. 8. Cambridge University Press, Cambridge (2009)Google Scholar
  24. 24.
    Sifry, D., Marks, K., Çelik, T.: Attention.XML Draft Specification (2004)Google Scholar
  25. 25.
    Valsamidis, S., Kazanidis, I., Kontogiannis, S., Karakos, A.: Course Ranking and Automated Suggestions through Web Mining. In: 2010 10th IEEE International Conference on Advanced Learning Technologies, pp. 197–199. IEEE, Los Alamitos (2010)CrossRefGoogle Scholar
  26. 26.
    Wolpers, M., Najjar, J., Verbert, K., Duval, E.: Tracking actual usage: the attention metadata approach. Technology Education & Society 10(3), 106–121 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Vicente Arturo Romero Zaldivar
    • 1
    • 2
  • Raquel M. Crespo García
    • 2
  • Daniel Burgos
    • 1
    • 3
  • Carlos Delgado Kloos
    • 2
  • Abelardo Pardo
    • 2
  1. 1.Atos Origin SAEMadridSpain
  2. 2.Department of Telematic EngineeringUniversity Carlos III of MadridSpain
  3. 3.Universidad Internacional de La RiojaLogroñoSpain

Personalised recommendations