On the Way to a Science Intelligence: Visualizing TEL Tweets for Trend Detection

  • Peter Kraker
  • Claudia Wagner
  • Fleur Jeanquartier
  • Stefanie Lindstaedt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6964)


This paper presents an adaptable system for detecting trends based on the micro-blogging service Twitter, and sets out to explore to what extent such a tool can support researchers. Twitter has high uptake in the scientific community, but there is a need for a means of extracting the most important topics from a Twitter stream. There are too many tweets to read them all, and there is no organized way of keeping up with the backlog. Following the cues of visual analytics, we use visualizations to show both the temporal evolution of topics, and the relations between different topics. The Twitter Trend Detection was evaluated in the domain of Technology Enhanced Learning (TEL). The evaluation results indicate that our prototype supports trend detection but reveals the need for refined preprocessing, and further zooming and filtering facilities.


science 2.0 trend detection social media qualitative analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belmonte, N.G.: JavaScript InfoVis Toolkit,
  2. 2.
    Benhardus, J.: Streaming Trend Detection in Twitter. Tech. rep., University of Colorado at Colorado Springs (2010)Google Scholar
  3. 3.
    Bono, E.D.: De Bono’s thinking course. Pearson Education, London (2006)Google Scholar
  4. 4.
    Byron, L., Wattenberg, M.: Stacked graphs–geometry & aesthetics. IEEE Transactions on Visualization and Computer Graphics 14(6), 1245–1252 (2008)CrossRefGoogle Scholar
  5. 5.
    Cheong, M., Lee, V.: Integrating web-based intelligence retrieval and decision-making from the twitter trends knowledge base. In: Proceeding of the 2nd ACM workshop on Social web search and mining - SWSM 2009, pp. 1–8. ACM Press, New York (2009)Google Scholar
  6. 6.
    Dubinko, M., Kumar, R., Magnani, J., Novak, J., Raghavan, P., Tomkins, A.: Visualizing tags over time. ACM Transactions on the Web 1(2) (August 2007)Google Scholar
  7. 7.
    Fukuhara, T.: Analyzing concerns of people using Weblog articles and real world temporal data. In: Proceedings of the 14th International Conference on World Wide Web - WWW 2005 (2005)Google Scholar
  8. 8.
    Glance, N., Hurst, M., Tomokiyo, T.: Blogpulse: Automated trend discovery for weblogs. In: WWW 2004 Workshop on the Weblogging Ecosystem: Aggregation, Analysis and Dynamics, vol. 2004, Citeseer (2004)Google Scholar
  9. 9.
    Havre, S., Hetzler, E., Whitney, P., Nowell, L.: ThemeRiver: visualizing thematic changes in large document collections. IEEE Transactions on Visualization and Computer Graphics 8(1), 9–20 (2002)CrossRefGoogle Scholar
  10. 10.
    Heer, J., Bostock, M., Ogievetsky, V.: A tour through the visualization zoo. Communications of the ACM 53(6), 59 (2010)CrossRefGoogle Scholar
  11. 11.
    Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Trend detection in folksonomies. In: Avrithis, Y., Kompatsiaris, Y., Staab, S., O’Connor, N.E. (eds.) SAMT 2006. LNCS, vol. 4306, pp. 56–70. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Keim, D., Kohlhammer, J., Santucci, G., Mansmann, F., Wanner, F., Schäfer, M.: Visual Analytics Challenges. In: eChallenges 2009, Istanbul, Turkey (2009)Google Scholar
  13. 13.
    Lamping, J., Rao, R., Pirolli, P.: A focus+context technique based on hyperbolic geometry for visualizing large hierarchies. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems - CHI 1995, May 1995, pp. 401–408. ACM Press, New York (1995)Google Scholar
  14. 14.
    Letierce, J., Passant, A., Breslin, J., Decker, S.: Understanding how Twitter is used to spread scientific messages. In: Web Science Conference, Raleigh, NC (2010)Google Scholar
  15. 15.
    Mathioudakis, M.: TwitterMonitor: Trend Detection over the Twitter Stream. In: Proceedings of the 2010 International Conference on Management of Data, pp. 1155–1157 (2010)Google Scholar
  16. 16.
    Schmid, H.: Probabilistic part-of-speech tagging using decision trees. In: Proceedings of the International Conference on New Methods in Language Processing, Manchester, UK (1994)Google Scholar
  17. 17.
    STELLAR Network of Excellence.,
  18. 18.
    The Apache Software Foundation. Apache Solr,
  19. 19. Twapper Keeper,
  20. 20.
    Twitter Inc., Twitter Streaming API,
  21. 21.
    Ullmann, T.D., Wild, F., Scott, P., Duval, E., Parra, G., Reinhardt, W., Heinze, N., Kraker, P., Fessl, A., Lindstaedt, S., Nagel, T., Gillet, D.: A Science 2.0 Infrastructure for Technology-Enhanced Learning. In: Wolpers, M., Kirschner, P., Scheffel, M., Lindstaedt, S., Dimitrova, V. (eds.) Sustaining TEL: From Innovation to Practice. Proceedings of the 5th Conference on Technology Enhanced Learning, pp. 590–595. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Valkhof, K.: Grafico javascript charting library,

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Peter Kraker
    • 1
  • Claudia Wagner
    • 2
  • Fleur Jeanquartier
    • 1
  • Stefanie Lindstaedt
    • 1
  1. 1.Know-CenterGrazAustria
  2. 2.Joanneum ResearchGrazAustria

Personalised recommendations