Coherent Top-k Ontology Alignment for OWL EL

  • Jan Noessner
  • Mathias Niepert
  • Heiner Stuckenschmidt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6929)


The integration of distributed information sources is a key challenge in data and knowledge management applications. Instances of this problem range from mapping schemas of heterogeneous databases to object reconciliation in linked open data repositories. In this paper, we approach the problem of aligning description logic ontologies. We focus particularly on the problem of computing coherent alignments, that is, alignments that do not lead to unsatisfiable classes in the resulting merged ontologies. We believe that considering coherence during the alignment process is important as it is this logical concept that distinguishes ontology alignment from other data integration problems. Depending on the heterogeneity of the ontologies it is often more reasonable to generate alignments with at most k correspondences because not every entity has a matchable counterpart. We describe both greedy and optimal algorithms for computing coherent top-k alignments between OWL EL ontologies and assess their performance relative to state-of-the-art matching systems.


Description Logic Match System Reference Alignment Ontology Match Markov Logic Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Baader, F., Brandt, S., Lutz, C.: Pushing the \(\mathcal{EL}\) envelope. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence (2005)Google Scholar
  2. 2.
    Baader, F., Brandt, S., Lutz, C.: Pushing the \(\mathcal{EL}\) envelope further. In: Proceedings of the OWLED Workshop (2008)Google Scholar
  3. 3.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  4. 4.
    Cruz, I., Stroe, C., Caci, M., Caimi, F., Palmonari, M., Antonelli, F., Keles, U.: Using AgreementMaker to Align Ontologies for OAEI 2010. In: Proceedings of the 5th Workshop on Ontology Matching (2010)Google Scholar
  5. 5.
    David, J., Guillet, F., Briand, H.: Matching directories and OWL ontologies with AROMA. In: Proceedings of the 15th Conference on Information and knowledge management (2006)Google Scholar
  6. 6.
    Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  7. 7.
    Euzenat, J., et al.: First Results of the Ontology Alignment Evaluation Initiative 2010. In: Proceedings of the 5th Workshop on Ontology Matching (2010)Google Scholar
  8. 8.
    Gal, A.: Managing uncertainty in schema matching with top-k schema mappings. J. Data Semantics VI (2006)Google Scholar
  9. 9.
    Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S. (eds.): OWL 2 Web Ontology Language: Primer. W3C Recommendation (2009)Google Scholar
  10. 10.
    Hu, W., Chen, J., Cheng, G., Qu, Y.: ObjectCoref & Falcon-AO: Results for OAEI 2010. In: Proceedings of the 5th International Ontology Matching Workshop (2010)Google Scholar
  11. 11.
    Jean-Maya, Y.R., Shironoshitaa, E.P., Kabuka, M.R.: Ontology matching with semantic verification. Web Semantics 7(3) (2009)Google Scholar
  12. 12.
    Krötzsch, M.: Efficient inferencing for OWL EL. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 234–246. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Meilicke, C., Tamilin, A., Stuckenschmidt, H.: Repairing ontology mappings. In: Proceedings of the Conference on Artificial Intelligence (2007)Google Scholar
  14. 14.
    Niepert, M.: A Delayed Column Generation Strategy for Exact k-Bounded MAP Inference in Markov Logic Networks. In: Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence (2010)Google Scholar
  15. 15.
    Niepert, M., Meilicke, C., Stuckenschmidt, H.: A Probabilistic-Logical Framework for Ontology Matching. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence (2010)Google Scholar
  16. 16.
    Niepert, M., Noessner, J., Stuckenschmidt, H.: Log-Linear Description Logics. In: Proceedings of IJCAI (2011)Google Scholar
  17. 17.
    Noessner, J., Niepert, M.: CODI: Combinatorial Optimization for Data Integration–Results for OAEI 2010. In: Proceedings of the 5th Workshop on Ontology Matching (2010)Google Scholar
  18. 18.
    Noy, N., Musen, M.: The PROMPT suite: interactive tools for ontology merging and mapping. International Journal of Human-Computer Studies 59(6), 983–1024 (2003)CrossRefGoogle Scholar
  19. 19.
    Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2) (2006)Google Scholar
  20. 20.
    Riedel, S.: Improving the accuracy and efficiency of map inference for markov logic. In: Proceedings of the Conference on Uncertainty in Artificial Intelligence (2008)Google Scholar
  21. 21.
    Schlobach, S., Huang, Z., Cornet, R., Harmelen, F.v.: Debugging incoherent terminologies. J. Autom. Reasoning 39(3) (2007)Google Scholar
  22. 22.
    Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-DL reasoner. Journal of Web Semantics 5(2), 51–53 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jan Noessner
    • 1
  • Mathias Niepert
    • 1
  • Heiner Stuckenschmidt
    • 1
  1. 1.KR & KM Research GroupUniversität MannheimMannheimGermany

Personalised recommendations