A Software Platform for Evolutionary Computation with Pluggable Parallelism and Quality Assurance

  • Pedro Evangelista
  • Jorge Pinho
  • Emanuel Gonçalves
  • Paulo Maia
  • João Luis Sobral
  • Miguel Rocha
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 364)

Abstract

This paper proposes the Java Evolutionary Computation Library (JECoLi), an adaptable, flexible, extensible and reliable software framework implementing metaheuristic optimization algorithms, using the Java programming language. JECoLi aims to offer a solution suited for the integration of Evolutionary Computation (EC)-based approaches in larger applications, and for the rapid and efficient benchmarking of EC algorithms in specific problems. Its main contributions are (i) the implementation of pluggable parallelization modules, independent from the EC algorithms, allowing the programs to adapt to the available hardware resources in a transparent way, without changing the base code; (ii) a flexible platform for software quality assurance that allows creating tests for the implemented features and for user-defined extensions. The library is freely available as an open-source project.

Keywords

Evolutionary Computation Open-source software Parallel Evolutionary Algorithms Software Quality 

References

  1. 1.
    Cheon, Y., Leavens, G.: A simple and practical approach to unit testing: The JML and JUnit way. In: Deng, T. (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 231–1901. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Kiczales, G.J., Lamping, J.O., Lopes, C.V., Hugunin, J.J., Hilsdale, E.A., Boyapati, C.: Aspect-oriented programming, October 15, US Patent 6,467,086 (2002)Google Scholar
  3. 3.
    Mendes, R., Rocha, I., Ferreira, E., Rocha, M.: A comparison of algorithms for the optimization of fermentation processes. In: 2006 IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada, pp. 7371–7378 (July 2006)Google Scholar
  4. 4.
    Rocha, I., Maia, P., Evangelista, P., Vilaça, P., Soares, S., Pinto, J.P., Nielsen, J., Patil, K.R., Ferreira, E.C., Rocha, M.: Optflux: an open-source software platform for in silico metabolic engineering. BMC Systems Biology 4(45) (2010)Google Scholar
  5. 5.
    Rocha, M., Maia, P., Mendes, R., Ferreira, E.C., Patil, K., Nielsen, J., Rocha, I.: Natural computation meta-heuristics for the in silico optimization of microbial strains. BMC Bioinformatics 9(499) (2008)Google Scholar
  6. 6.
    Sousa, P., Rocha, M., Rio, M., Cortez, P.: Efficient OSPF Weight Allocation for Intra-domain QoS Optimization. In: Parr, G., Malone, D., Ó Foghlú, M. (eds.) IPOM 2006. LNCS, vol. 4268, pp. 37–48. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2011

Authors and Affiliations

  • Pedro Evangelista
    • 1
    • 2
  • Jorge Pinho
    • 1
  • Emanuel Gonçalves
    • 1
  • Paulo Maia
    • 1
    • 2
  • João Luis Sobral
    • 1
  • Miguel Rocha
    • 1
  1. 1.Department of Informatics / CCTCUniversity of MinhoPortugal
  2. 2.IBB - Institute for Biotechnology and Bioengineering Centre of Biological EngineeringUniversity of MinhoBragaPortugal

Personalised recommendations