Behavioral Profiles for Building Energy Performance Using eXclusive SOM

  • Félix Iglesias Vázquez
  • Sergio Cantos Gaceo
  • Wolfgang Kastner
  • José A. Montero Morales
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 363)


The identification of user and usage profiles in the built environment is of vital importance both for energy performance analysis and smart control purposes. Clustering tools are a suitable means as they are able to discover representative patterns from a myriad of collected data. In this work, the methodology of an eXclusive Self-Organizing Map (XSOM) is proposed as an evolution of a Kohonen map with outlier rejection capabilities. As will be shown, XSOM characteristics fit perfectly with the targeted application areas.


pattern discovery neural network Self-Organizing Map user behavior and profiling energy performance simulation building automation 


  1. 1.
    Balakrishnan, N.: Handbook of the Logistic Distribution. Marcel Dekker, New York (1992)zbMATHGoogle Scholar
  2. 2.
    Berglund, E., Sitte, J.: The parameterless self-organizing map algorithm. IEEE Transactions on Neural Networks 17(2), 305–316 (2006)CrossRefGoogle Scholar
  3. 3.
    Cantos, S., Iglesias, F., Vidal, J.: Comparison of standard and case-based user profiles in building’s energy performance simulation. In: Eleventh International IBPSA Conference on Building Simulation 2009, pp. 584–590 (2009)Google Scholar
  4. 4.
    Cheng, J.G.: Outlier management in intelligent data analysis. Ph.D. thesis, University of London (2000)Google Scholar
  5. 5.
    Corrado, V., Mechri, H.E.: Effect of data uncertainty on energy performance assessment of buildings. In: Climamed 2007 Proceedings, pp. 737–758 (2007)Google Scholar
  6. 6.
    Crosbie, T., Dawood, N., Dean, J.: Energy profiling in the life-cycle assessment of buildings. Management of Environmental Quality: An International Journal 21, 20–31 (2010)CrossRefGoogle Scholar
  7. 7.
    Heierman III, E.O., Cook, D.: Improving home automation by discovering regularly occurring device usage patterns. In: Third IEEE International Conference on Data Mining, pp. 537–540 (2003)Google Scholar
  8. 8.
    Iglesias Vázquez, F., Kastner, W.: Usage profiles for sustainable buildings. In: IEEE Conference on Emerging Technologies and Factory Automation, 2010, pp. 1–8 (2010)Google Scholar
  9. 9.
    Iglesias Vázquez, F., Kastner, W.: Clustering methods for occupancy prediction in smart home control. In: IEEE International Symposium on Industrial Electronics (2011) (unpublished)Google Scholar
  10. 10.
    Karypis, G.: CLUTO: A Clustering Toolkit. University of Minnesota, Dept. of Computer Science, Minneapolis, MN (2003), release 2.1.1Google Scholar
  11. 11.
    Kohonen, T.: The self-organizing map. Proceedings of the IEEE 78(9), 1464–1480 (1990)CrossRefGoogle Scholar
  12. 12.
    Lingras, P., Hogo, M., Snorek, M.: Interval set clustering of web users using modified kohonen self-organizing maps based on the properties of rough sets. Web Intelligence and Agent Systems 2, 217–225 (2004)Google Scholar
  13. 13.
    Mahdavi, A., Pröglhöf, C.: User behaviour and energy performance in buildings. In: Int. Energy Economics Workshop TUV, IEWT 2009, pp. 1–13 (2009)Google Scholar
  14. 14.
    Mills, E.: Inter-comparison of north american residential energy analysis tools. Energy and Buildings 36(9), 865–880 (2004)CrossRefGoogle Scholar
  15. 15.
    Mingoti, S.A., Lima, J.O.: Comparing som neural network with fuzzy c-means, k-means and traditional hierarchical clustering algorithms. European Journal of Operational Research 174(3), 1742–1759 (2006)zbMATHCrossRefGoogle Scholar
  16. 16.
    Qian, W., Zhou, A.: Analyzing popular clustering algorithms from different viewpoints. Journal of Software 13(8), 1382–1394 (2002)Google Scholar
  17. 17.
    Reinisch, C., Kofler, M.J., Iglesias, F., Kastner, W.: ThinkHome: Energy efficiency in future smart homes. EURASIP Journal on Embedded Systems 2011, 1–18 (2011)CrossRefGoogle Scholar
  18. 18.
    Sabaté, J., Peters, C.: 50% CO2-reduction in Mediterranean social housing through detailed life-cycle analysis. In: Climamed 2007 Proceedings, pp. 927–959 (2007)Google Scholar
  19. 19.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition: Fourth Edition, 4th edn. Academic Press (Elsevier) (2003)Google Scholar
  20. 20.
    Verdu, S., Garcia, M., Franco, F., Encinas, N., Marin, A., Molina, A., Lazaro, E.: Characterization and identification of electrical customers through the use of self-organizing maps and daily load parameters. In: IEEE Conference on Power Systems Conference and Exposition, 2004, vol. 2, pp. 899–906 (2004)Google Scholar
  21. 21.
    Wu, J., Hassan, A.E., Holt, R.C.: Comparison of clustering algorithms in the context of software evolution, pp. 525–535. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  22. 22.
    Zheng, X., Cai, Z., Li, Q.: An experimental comparison of three kinds of clustering algorithms. In: International Conference on Neural Networks and Brain, ICNN B 2005, vol. 2, pp. 767–771 (2005)Google Scholar

Copyright information

© International Federation for Information Processing 2011

Authors and Affiliations

  • Félix Iglesias Vázquez
    • 1
  • Sergio Cantos Gaceo
    • 2
  • Wolfgang Kastner
    • 1
  • José A. Montero Morales
    • 2
  1. 1.Automation Systems GroupVienna University of TechnologyViennaAustria
  2. 2.La Salle (Universitat Ramon Llull), Electronics & CommunicationBarcelonaSpain

Personalised recommendations