Advertisement

Protecting AES with Shamir’s Secret Sharing Scheme

  • Louis Goubin
  • Ange Martinelli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6917)

Abstract

Cryptographic algorithms embedded on physical devices are particularly vulnerable to Side Channel Analysis (SCA). The most common countermeasure for block cipher implementations is masking, which randomizes the variables to be protected by combining them with one or several random values. In this paper, we propose an original masking scheme based on Shamir’s Secret Sharing scheme [22] as an alternative to Boolean masking. We detail its implementation for the AES using the same tool than Rivain and Prouff in CHES 2010 [16]: multi-party computation. We then conduct a security analysis of our scheme in order to compare it to Boolean masking. Our results show that for a given amount of noise the proposed scheme - implemented to the first order - provides the same security level as 3 rd up to 4 th order boolean masking, together with a better efficiency.

Keywords

Side Channel Analysis (SCA) Masking AES Implementation Shamir’s Secret Sharing Multi-party computation 

References

  1. 1.
    Akkar, M.-L., Giraud, C.: An implementation of DES and AES, secure against some attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 309–318. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: STOC, pp. 1–10. ACM, New York (1988)Google Scholar
  3. 3.
    Brier, É., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to Counteract Power-Analysis Attacks. In: Wiener [26], pp. 398–412Google Scholar
  5. 5.
    Clavier, C., Gaj, K. (eds.): CHES 2009. LNCS, vol. 5747. Springer, Heidelberg (2009)zbMATHGoogle Scholar
  6. 6.
    Fumaroli, G., Martinelli, A., Prouff, E., Rivain, M.: Affine masking against higher-order side channel analysis. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 262–280. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Gierlichs, B., Batina, L., Preneel, B., Verbauwhede, I.: Revisiting Higher-Order DPA Attacks: Multivariate Mutual Information Analysis. Cryptology ePrint Archive, Report 2009/228 (2009), http://eprint.iacr.org/
  8. 8.
    Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Goubin, L., Patarin, J.: DES and Differential Power Analysis – The Duplication Method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Ishai, Y., Sahai, A., Wagner, D.: Private Circuits: Securing Hardware against Probing Attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener [26], pp. 388–397Google Scholar
  12. 12.
    Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks – Revealing the Secrets of Smartcards. Springer, Heidelberg (2007)Google Scholar
  13. 13.
    Messerges, T.S.: Using Second-Order Power Analysis to Attack DPA Resistant Software. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Pointcheval, D. (ed.): CT-RSA 2006. LNCS, vol. 3860. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  15. 15.
    Prouff, E., Rivain, M.: Theoretical and Practical Aspects of Mutual Information Based Side Channel Analysis. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 499–518. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Rivain, M., Prouff, E.: Provably Secure Higher-Order Masking of AES. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Prouff, E., Rivain, M.: Theoretical and Practical Aspects of Mutual Information Based Side Channel Analysis (Extended Version). Int. Journal of Applied Cryptography, IJACT 2(2) (2010)Google Scholar
  18. 18.
    Prouff, E., Rivain, M., Bévan, R.: Statistical Analysis of Second Order Differential Power Analysis. IEEE Trans. Comput. 58(6), 799–811 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Prouff, E., Roche, T.: Higher-order glitches free implementation of the aes using secure multi-party computation protocols. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 79–94. Springer, Heidelberg (2011)Google Scholar
  20. 20.
    Rivain, M., Prouff, E., Doget, J.: Higher-Order Masking and Shuffling for Software Implementations of Block Ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 171–188. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Schramm, K., Paar, C.: Higher Order Masking of the AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 208–225. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Shamir, A.: How to Share a Secret. Communications of the ACM 22(11), 612–613 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Standaert, F.-X., Malkin, T.G., Yung, M.: A Unified Framework for the Analysis of Side-Channel Key Recovery Attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  24. 24.
    Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M., Kasper, M., Mangard, S.: The world is not enough: Another look on second-order dpa. Cryptology ePrint Archive, Report 2010/180 (2010), http://eprint.iacr.org/
  25. 25.
    von Willich, M.: A technique with an information-theoretic basis for protecting secret data from differential power attacks. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 44–62. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  26. 26.
    Wiener, M. (ed.): CRYPTO 1999. LNCS, vol. 1666. Springer, Heidelberg (1999)zbMATHGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2011

Authors and Affiliations

  • Louis Goubin
    • 1
  • Ange Martinelli
    • 1
    • 2
  1. 1.Versailles Saint-Quentin-en-Yvelines UniversityFrance
  2. 2.Thales CommunicationsFrance

Personalised recommendations